Computer Science > Computer Science and Game Theory
[Submitted on 15 Jun 2016]
Title:Signaling equilibria for dynamic LQG games with asymmetric information
View PDFAbstract:We consider a finite horizon dynamic game with two players who observe their types privately and take actions, which are publicly observed. Players' types evolve as independent, controlled linear Gaussian processes and players incur quadratic instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with asymmetric information. We show that under certain conditions, players' strategies that are linear in their private types, together with Gaussian beliefs form a perfect Bayesian equilibrium (PBE) of the game. Furthermore, it is shown that this is a signaling equilibrium due to the fact that future beliefs on players' types are affected by the equilibrium strategies. We provide a backward-forward algorithm to find the PBE. Each step of the backward algorithm reduces to solving an algebraic matrix equation for every possible realization of the state estimate covariance matrix. The forward algorithm consists of Kalman filter recursions, where state estimate covariance matrices depend on equilibrium strategies.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.