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Abstract

We develop and analyze stochastic optimization algorithms for problems in which the ex-
pected loss is strongly convex, and the optimum is (approximately) sparse. Previous approaches
are able to exploit only one of these two structures, yielding an O(d/T ) convergence rate for
strongly convex objectives in d dimensions, and an O(

√
(s log d)/T ) convergence rate when the

optimum is s-sparse. Our algorithm is based on successively solving a series of ℓ1-regularized
optimization problems using Nesterov’s dual averaging algorithm. We establish that the error
of our solution after T iterations is at most O((s log d)/T ), with natural extensions to approx-
imate sparsity. Our results apply to locally Lipschitz losses including the logistic, exponential,
hinge and least-squares losses. By recourse to statistical minimax results, we show that our
convergence rates are optimal up to multiplicative constant factors. The effectiveness of our
approach is also confirmed in numerical simulations, in which we compare to several baselines
on a least-squares regression problem.

1 Introduction

Stochastic optimization algorithms have many desirable features for large-scale machine learning,
and accordingly have been the focus of renewed and intensive study in the last several years (e.g.,
see the papers [26, 4, 10, 30] and references therein). The empirical efficiency of these methods
is backed with strong theoretical guarantees, providing sharp bounds on their convergence rates.
These convergence rates are known to depend on the structure of the underlying objective function,
with faster rates being possible for objective functions that are smooth and/or (strongly) convex,
or optima that have desirable features such as sparsity. More precisely, for an objective function
that is strongly convex, stochastic gradient descent enjoys a convergence rate ranging from O(1/T ),
when features vectors are extremely sparse, to O(d/T ) when feature vectors are dense [11, 19, 12].
Such results are of significant interest, because the strong convexity condition is satisfied for many
common machine learning problems, including boosting, least squares regression, support vector
machines and generalized linear models, among other examples.

A complementary type of condition is that of sparsity, either exact or approximate, in the
optimal solution. Sparse models have proven useful in many application areas (see the overview
papers [7, 18, 5] and references therein for further background), and many optimization-based
statistical procedures seek to exploit such sparsity via ℓ1-regularization. A significant feature of
optimization algorithms for sparse problems is their mild logarithmic scaling with the problem
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dimension [20, 27, 10, 30]. More precisely, it is known [20, 27] that when the optimal solution
θ∗ has at most s non-zero entries, appropriate versions of the stochastic mirror descent algorithm
converge at a rate O(s

√
(log d)/T ). Srebro et al. [28] exploit the smoothness of many common

loss functions; in application to sparse linear regression, their analysis yields improved rates of the
form O(η

√
(s log d)/T ), where η is the noise variance. While the

√
log d scaling of the error makes

these methods attractive in high dimensions, observe that the scaling with respect to the number of
iterations is relatively slow—namely, O(1/

√
T ) as opposed to the O(1/T ) rate possible for strongly

convex problems.
Many optimization problems encountered in practice exhibit both features: the objective func-

tion is strongly convex, and the optimum is sparse, or more generally, well-approximated by a
sparse vector. This fact leads to the natural question: is it possible to design an algorithm for
stochastic optimization that enjoys the best features of both types of structure? More specifi-
cally, the algorithm should have a O(1/T ) convergence rate, but simultaneously enjoy the mild
logarithmic dependence on dimension. The main contribution of this paper is to answer this ques-
tion in the affirmative, and in particular, to analyze a new algorithm that has convergence rate
O((s log d)/T ) for a strongly convex problem with an s-sparse optimum in d dimensions. Moreover,
using information-theoretic techniques, we prove that this rate is unimprovable up to constant fac-
tors, meaning that no algorithm can converge at a substantially faster rate.

The algorithm proposed in this paper builds off recent work on multi-step methods for strongly
convex problems [14, 12, 15], but involves some new ingredients that are essential to obtain optimal
rates for statistical problems with sparse optima. In particular, instead of performing updates on
the same objective, we form a sequence of objective functions by decreasing the amount of regu-
larization as the optimization algorithm proceeds. From a statistical viewpoint, this reduction is
quite natural: at the initial stages, the algorithm has seen only a few samples, and so should be
regularized more heavily, whereas at later stages when the effective sample size is much larger, the
regularization should be appropriately attenuated. Each step of our algorithm can be computed
efficiently with a closed form update rule in many common examples. In summary, the outcome of
our development is an optimal one-pass algorithm for many structured statistical problems in high
dimensions, and with computational complexity linear in the sample size. Numerical simulations
confirm our theoretical predictions regarding the convergence rate of the algorithm, and also es-
tablish its superiority compared to regularized dual averaging [30] and stochastic gradient descent
algorithms. They also confirm that a direct application of the multi-step method of Juditsky and
Nesterov [14] is inferior to our algorithm, meaning that our gradual decrease of regularization is
quite critical. In order to keep our presentation focused, we restrict our attention to multi-step
variants of the dual averaging algorithm; however, it is worth noting that similar results can also
be achieved for mirror descent as well as Nesterov’s accelerated gradient methods [21] by combin-
ing our results with recent work in the optimization literature [15]. Although this paper focuses
exclusively on problems involving the recovery of a sparse vector, similar ideas can be extended
extend to other low-dimensional structures such as group-sparse vectors and low-rank matrices, as
discussed in the statistical context [18].
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2 Problem set-up and algorithm description

Given a subset Ω ⊆ R
d and a random variable Z taking values in a space Z, we consider an

optimization problem of the form

θ∗ ∈ argmin
θ∈Ω

E[L(θ;Z)], (1)

where L : Ω×Z → R is a given loss function. As is standard in stochastic optimization, we do not
have direct access to the expected loss function L(θ) := E[L(θ;Z)], nor to its subgradients. Rather,
for a given a query point θ ∈ Ω, we observe a stochastic subgradient, meaning a random vector
g(θ) ∈ R

d such that E[g(θ)] ∈ ∂L(θ). We then seek to approach the optimum of the population
objective L using a sequence of these stochastic subgradients.

The goal of this paper is to design algorithms that are suitable for solving the problem (1) when
the optimum θ∗ is sparse. In the simplest case, the optimum θ∗ might be exactly s-sparse, meaning
that it has at most s non-zero entries. Our analysis is actually much more general than this exact
sparsity setting, in that we provide oracle inequalities that apply to arbitrary vectors, and also
guarantee fast rates for vectors that are approximately sparse. More precisely, for any given subset
S ⊆ {1, . . . , d} of cardinality |S| = s, we provide upper bounds on the optimization error that scale
linearly with s, and also involve the residual term ‖θ∗Sc‖1 :=

∑
j∈Sc |θ∗j |. For a general optimum

θ∗, the best bound is obtained by choosing the subset S appropriately so as to balance these two
contributions to the error.

2.1 Algorithm description

In order to solve a sparse version of the problem (1), our strategy is to consider a sequence of
regularized problems of the form

θ̂λ = arg min
θ∈Ω′

fλ(θ) where fλ(θ) := L(θ) + λ‖θ‖1. (2)

Given a total number of iterations T , our algorithm involves a sequence of KT different epochs,
where the regularization parameter λ > 0 and the constraint set Ω′ ⊂ Ω change from epoch to
epoch. More precisely, the epochs are specified by:

• a sequence of natural numbers {Ti}KTi=1, where Ti specifies the length of the ith epoch and∑KT
i=1 Ti = T ,

• a sequence of positive regularization weights {λi}KTi=1, and

• a sequence of positive radii {Ri}KTi=1 and d-dimensional vectors {yi}KTi=1, which specify the
constraint set

Ω(Ri) :=
{
θ ∈ Ω | ‖θ − yi‖p ≤ Ri

}
(3)

that is used throughout the ith epoch.

We initialize the algorithm in the first epoch with y1 = 0, and with any radius R1 that is an
upper bound on ‖θ∗‖1. The norm ‖ · ‖p used in defining the constraint set Ω(Ri) is specified by
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p = 2 log d
2 log d−1 , where the rationale for this particular choice will be provided momentarily.

At a high level, the goal of the ith epoch is to perform the update yi 7→ yi+1, in such a way
that we are guaranteed that ‖yi+1 − θ∗‖21 ≤ R2

i+1 for each i = 1, 2, . . .. We choose the radii so
as to decay geometrically as R2

i+1 = R2
i /2, so that upon termination of the Kth

T epoch, we have
‖yKT − θ∗‖21 ≤ R2

i /2
KT . In order to perform the update yi 7→ yi+1, we run Ti rounds of the

stochastic dual averaging algorithm [22] on the regularized objective function

min
θ∈Ω(Ri)

{
L(θ) + λi‖θ‖1

}
. (4)

When applied to this objective function in the ith epoch, the dual averaging algorithm operates
on stochastic subgradients of the cost function L(θ) + λi‖θ‖1, and using a sequence of step sizes
{αt}Tit=0, it generates two sequences of vectors {µt}Tit=0 and {θt}Tit=0, initialized as µ0 = 0 and θ0 = yi.
At iteration t = 0, 1, . . . , Ti, we let gt be a stochastic subgradient of L at θt, and we let νt be any
element of the subdifferential of the ℓ1-norm ‖ · ‖1 at θt. Consequently, the vector E[gt] +λiν

t is an
element of the sub-differential of L(θ) + λi‖θ‖1 at θt. The stochastic dual average update at time
t performs the mapping (µt, θt) 7→ (µt+1, θt+1) via the recursions

µt+1 = µt + gt + λiν
t, and (5a)

θt+1 = arg min
θ∈Ω(Ri)

{
αt+1〈µt+1, θ〉+ ψyi,Ri(θ)

}
, (5b)

where the prox function ψ is specified below (6). The pseudocode describing the overall procedure
is given in Algorithm 1.

In the stochastic dual averaging updates (5), we use the prox function

ψyi,Ri(θ) =
1

2(p − 1)R2
i

‖θ − yi‖2p, where p =
2 log d

2 log d− 1
. (6)

This particular choice of the prox-function and the specific value of p ensure that the function ψ
is strongly convex with respect to the ℓ1-norm; it has been used previously for sparse stochastic
optimization (see e.g. [20, 27, 9]). In most of our examples, we consider the parameter space Ω = R

d

and owing to our choice of the prox-function and the feasible set in the update (5b), we can compute
θt+1 from µt+1 in closed form. See Appendix A for further details.

It is worth noting that our update rule, in taking the subgradient of the ℓ1-norm, is different from
previous approaches inspired by Nesterov’s composite minimization strategy [21], which compute
a prox-mapping involving the ℓ1-norm [10, 30, 9]. Our results do extend in an obvious way to
computing such an exact composite prox-mapping. However, even when Ω = R

d, computing this
exact prox-mapping with the ℓp norm constraint in our update rule (5b) has a complexity O(d2),
which is prohibitive in high dimensions. In contrast, our update enjoys an O(d) complexity.

2.2 Conditions

Having defined our algorithm, we now discuss the conditions on the objective function L(θ) = E[L(θ;Z)]
and stochastic gradients that underlie our analysis. We begin with two conditions on the objective
function.
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Algorithm 1 Regularization Annealed epoch Dual AveRaging (RADAR)

Require: Epoch length schedule {Ti}KTi=1, initial radius R1, step-size multiplier α, prox-function
ψ, initial prox-center y1, regularization parameters λi.
for Epoch i = 1, 2, . . . ,KT do

Initialize µ0 = 0 and θ0 = yi.
for Iteration t = 0, 1, . . . , Ti − 1 do

Update (µt, θt) 7→ (µt+1, θt+1) according to rule (5) with step size αt = α/
√
t.

end for

Set yi+1 =
∑Ti
t=1 θ

t

Ti
.

Update R2
i+1 = R2

i /2.
end for
Return yKT+1

Assumption 1 (Local Lipschitz condition). For each R > 0, there is a constant G = G(R) such
that

|L(θ)− L(θ̃)| ≤ G ‖θ − θ̃‖1 (7)

for all θ, θ̃ ∈ Ω such that ‖θ − θ∗‖1 ≤ R and ‖θ̃ − θ∗‖1 ≤ R.

For instance, this condition holds whenever ‖∇L(θ)‖∞ ≤ G for all θ such that ‖θ‖1 ≤ R. In the
sequel, we provide several examples of loss functions whose gradients are bounded in this ℓ∞-sense.

As mentioned, our goal is to obtain fast rates for objective functions that are (locally) strongly
convex. Accordingly, our next step is to provide a formal definition of this condition:

Assumption 2 (Local strong convexity (LSC)). The function L : Ω → R satisfies an R-local form
of strong convexity (LSC) if there is a non-negative constant γ = γ(R) such that

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+ γ

2
‖θ − θ̃‖22. (8)

for any θ, θ̃ ∈ Ω with ‖θ‖1 ≤ R and ‖θ̃‖1 ≤ R.

Some of our results concerning stochastic optimization for finite pools of examples are based upon a
further weakening of the local strong convexity condition, which will be referred to as local restricted
strong convexity (see equation (28)). Such conditions have been used before in both statistical and
optimization-theoretic analyses of sparse high-dimensional problems [2, 3, 5, 18].

Our final condition concerns the mechanism that produces the stochastic subgradient g(θ) of
the cost function L at θ ∈ Ω. It is a tail condition on the error e(θ) := g(θ)− E[g(θ)].

Assumption 3 (Sub-Gaussian stochastic gradients). For all θ such that ‖θ − θ∗‖1 ≤ R, there is a
constant σ = σ(R) such that

E
[
exp(‖e(θ)‖2∞/σ2)

]
≤ exp(1). (9)
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Clearly, this condition holds whenever the error vector e(θ) has bounded components. More gen-
erally, the bound (9) holds with σ2 = O(log d) whenever each component of the error vector has
sub-Gaussian tails.1

2.3 Some illustrative examples

In this section, we describe some examples that satisfy the previously stated conditions. These
examples also help to clarify how the parameters of interest can be computed or bounded in
different applied scenarios.

Example 1 (Classification under Lipschitz losses). In binary classification, the samples consist of
pairs z = (x, y) ∈ R

d × {−1, 1}. The vector x represents a set of d features or covariates, used
to predict the class label y. One way in which to predict the label is via a linear classifier, which
makes classification decisions according to the rule x 7→ sign(〈θ, x〉). The vector of weights θ ∈ R

d

is estimated by minimizing an appropriately chosen loss function, of which many take the form
L(θ; z) = φ(y 〈θ, x〉) for a function φ : R → R+. Common choices include the hinge loss function

φhin(α) := max{1 − α, 0}︸ ︷︷ ︸
(1−α)+

, (10)

which underlies the support vector machine, or the logistic loss function φlog(α) = log(1 + exp(−α)).
Given a distribution P over Z, which can be either the population distribution or the empirical

distribution over a finite sample, a common strategy is to draw (xt, yt) ∼ P at iteration t, and use
the (stochastic) subgradient gt = ∇L(θ; (xt, yt)) = xtytφ

′(yt〈θ, xt〉). We now illustrate how the
assumptions of Section 2.2 are satisfied in this setting.

• Locally Lipschitz: In both of the above examples, the underlying function φ is actually
globally Lipschitz with parameter one. Thus, we have the bound

G ≤ E[|φ′
(
y〈θ, x〉

)
| ‖x‖∞] ≤ E‖x‖∞.

Often, the data satisfies the normalization ‖x‖∞ ≤ B, in which case we get G ≤ B. More gen-
erally, we often have sub-Gaussian or sub-exponential tail conditions [6] on the marginal dis-
tribution of each coordinate of x, in which case the same condition holds with G = O(

√
log d))

or G = O(log d) respectively.

• LSC: When the expectation (1) is under the population distribution, the above examples
satisfy the local strong convexity condition. Here we focus on the example of the logistic loss,
where ψ(α) := φ′′log(α) = exp(α)/(1 + exp(α))2 is its second derivative.

Considering the case of zero-mean covariates, and letting σmin(Σ) denote the minimum eigen-
value of the covariance matrix Σ = E[xxT ], a second-order Taylor series expansion yields

L(θ̃)− L(θ)− 〈∇L(θ), θ̃ − θ〉 = ψ(〈θ̃, x〉)
2

‖Σ1/2(θ − θ̃)‖22
(i)

≥ ψ(BR)σmin(Σ)

2
‖θ − θ̃‖22,

where θ̃ = aθ + (1 − a)θ̃ for some a ∈ (0, 1). Note that the lower bound (i) follows from
Hölder’s inequality—that is, |〈θ̃, x〉| ≤ ‖θ̃‖1‖x‖∞ ≤ RB. Putting together the pieces, we

1A zero mean random variable Z is sub-Gaussian with parameter γ if E[etZ ] ≤ exp(γ2t2/2) for all t ∈ R.
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conclude that γ ≥ ψ(BR)σmin(Σ) in this example. When sampling from a finite pool, we
require an analogous condition, known as restricted strong convexity, to hold for the sample
version; see Section 3.1.3 for further details.

• Sub-Gaussian gradients: For covariates bounded in expectation E‖x‖∞ ≤ B, this condi-
tion is also relatively straightforward to verify. A simple calculation identical to the verifica-
tion of the Lipschitz condition above yields that

‖e(θ)‖∞ = ‖∇L(θ; (x, y)) −∇L(θ)‖∞ ≤ ‖∇L(θ; (x, y))‖∞ + ‖∇L(θ)‖∞ ≤ 2B.

Thus, by setting σ2 = (2B)2, we find that E exp
(
‖e(θ)‖2

∞

4B2

)
≤ exp(1). If instead of a bound-

edness condition, we assume that elements of the vector σ have sub-Gaussian tails, then
the condition will hold with σ2 = O(log d), using standard results on sub-Gaussian maxima
(e.g., [6]).

We now turn to the problem of least-squares regression.

Example 2 (Least-squares regression). In the regression set-up, the samples are of the form
z = (x, y) ∈ R

d × R, and the least-squares estimator is obtained by minimizing the quadratic loss
L(θ; (x, y)) = (y − 〈θ, x〉)2/2. To illustrate the conditions more clearly, let us suppose to start,
relaxing this condition momentarily, that our samples are generated according to a linear model

y = 〈x, θ∗〉+ w, (11)

where w ∼ N (0, η2) is observation noise, and the covariate vectors x are zero-mean with covariance
matrix Σ = E[xxT ]. Under this condition, we have

L(θ) = E
[
L(θ; (x, y))

]
=

1

2
(θ − θ∗)TΣ(θ − θ∗) =

1

2
‖Σ1/2(θ − θ∗)‖22.

Consequently, the minimizer of L is given by θ∗, the true parameter in the linear model (11). We
now proceed to verify that our conditions from Section 2.2 are satisfied for this model.

• Locally Lipschitz: For the quadratic loss, we no longer have a global Lipschitz condition;
instead, the local Lipschitz parameter G(R) depends on the radius R, and the covariance
matrix Σ via the quantity ρ(Σ) := maxj Σjj. More specifically, we have

G(R)
(a)

≤ ‖Σ(θ − θ∗)‖∞ ≤ max
j,k

|Σjk| ‖θ − θ∗‖1
(b)

≤ ρ(Σ)R,

where step (a) exploits Hölder’s inequality, and inequality (b) follows since Σ is a positive
semidefinite matrix.

• LSC: Again, let us consider the case when L is defined via an expectation taken under the
population distribution. We then have

L(θ̃)− L(θ)− 〈∇L(θ), θ̃ − θ〉 = ‖Σ1/2(θ − θ̃)‖22
2

≥ σmin(Σ)

2
‖θ − θ̃‖22,

so that γ = σmin(Σ) in this example.
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• Sub-Gaussian gradients: Once again we assume that the design is bounded in ℓ∞-norm,
that is ‖x‖∞ ≤ B. It can be shown that Assumption 3 is satisfied with

σ2(R) = 24B4R2 + 36B2η2.

See Section 4.5 for details of this calculation.

In practice, the linear model assumption (11) is not likely to hold exactly, but the validity of our
three conditions can still be established under reasonable tail conditions on the covariate-response
pair. In particular, it can be shown that same local Lipschitz condition continues to hold with
G(R) = 2ρ(Σ)R, and the RSC condition also remains unchanged. In order to establish the sub-
Gaussian condition (Assumption 3), we need to make assumptions about the tail behavior of our
samples (xt, yt). It suffices to assume that the distribution of the vectors x and the conditional
distribution Y |X is also sub-Gaussian. Under these conditions, obtaining explicit bounds on σi
in terms of these sub-Gaussian parameters is analogous to our calculations above, and is omitted
here.

3 Main results and their consequences

We are now in a position to state the main results of this work, regarding the convergence properties
of Algorithm 1. Below we present two sets of results. Our first result (Theorem 1) applies to
problems for which the Lipschitz and sub-Gaussianity assumptions hold over the entire parameter
set Ω, and the RSC assumption holds uniformly for all θ satisfying ‖θ‖1 ≤ R1, where R1 is the
initial radius. Examples include classification with globally Lipschitz losses, such as the hinge and
logistic losses discussed in Example 1. Our second result (Theorem 2) applies to least-squares
loss, which is not Lipschitz on R

d, and requires a somewhat more delicate treatment. Both our
results follow from a common machinery, and build off of standard convergence results for the dual
averaging algorithm [22, 30]. For stating our results, we will assume that Assumptions 1 and 3 hold
with constants Gi := G(Ri) and σi := σ(Ri) at epoch i. Given a constant ω > 0 governing the
probability of error in our results, we also define ω2

i = ω2 + 24 log i at epoch i. Both the theorems
below are based on the choice of epoch lengths

Ti := c1

[
s2

γ2R2
i

(
(G2

i + σ2i ) log d+ ω2
i σ

2
i

)
+ log d

]
, (12)

where c1 is a suitably chosen universal constant.

3.1 Optimal rates for Lipschitz losses

We begin with a setting quite standard in the optimization literature, in which the loss function
is globally Lipschitz and the noise in our stochastic gradients is uniformly sub-Gaussian. More
formally, we assume that there are constants (G,σ) such that, independently of the choice of radius
R, Assumptions 1 and 3 hold with G(R) ≡ G and σ(R) ≡ σ. There are many common examples
in machine learning where these assumptions are met, some of which are outlined in Example 1.
We also use γ to denote the strong convexity constant γ(R1) in Assumption 2.

For a total of T iterations in Algorithm 1, we state our results for the parameter θ̂T = y(KT+1)

where we recall that KT is the total number of epochs completed in T iterations.
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3.1.1 Main theorem and some remarks

Our main theorem provides an upper bound on the convergence rate on our algorithm as a function
of the iteration number T , dimension d, strong convexity constant γ, Lipschitz constant G, and
some additional terms involving the sparsity of the optimal solution θ∗. More precisely, for each
subset S ⊆ {1, 2, . . . , d} of cardinality s, we define the quantity

ε2(θ∗;S) :=
‖θ∗Sc‖21
s

, (13)

where ‖θ∗Sc‖1 =
∑

j∈Sc |θ∗j | =
∑

j /∈S |θ∗j | is the ℓ1-norm of terms outside S. The behavior of this
quantity can be used to measure the degree of sparsity in the optimum θ∗. For instance, we have
ε2(θ∗;S) = 0 if and only if θ∗ is supported on S. Given a constant ω > 0, we also define the
shorthand

κT = log2

[
γ2R2

1T

s2((G2 + σ2) log d+ ω2σ2)

]
log d. (14)

With this notation, we have the following result:

Theorem 1. Suppose the expected loss L satisfies Assumptions 1— 3 with parameters G(R) ≡ G,
γ and σ(R) ≡ σ respectively, and we perform updates (5) with epoch lengths (12), and regulariza-
tion/steplength parameters

λ2i =
Riγ

s
√
Ti

√
(G2 + σ2) log d+ ω2

i σ
2, and αt = 5Ri

√
log d

(G2 + λ2i + σ2)t
. (15)

Then for any subset S ⊆ {1, . . . , d} of cardinality s and any T ≥ 2κT , there is a universal constant
c0 such that

‖θ̂T − θ∗‖22 ≤ c0

[
s

γ2T

(
(G2 + σ2) log d+ σ2(ω2 + log

κT
log d

)

)
+ ε2(θ∗;S)

]
(16)

with probability at least 1− 6 exp(−ω2/12).

As with earlier work on multi-step methods for strongly convex objectives [14, 15], the theorem
predicts an overall convergence rate of O( 1

γ2T
); under our assumptions, this rate is known to be

the best possible [20]. Apart from this scaling, the other interesting factors in the bound are the
logarithmic scaling in the dimension d, and the trade-off between the two terms: the first of which
scales linearly in a chosen sparsity level s, and the second term ε2(θ∗;S) represents a form of
approximation error. As a concrete instance, if the optimum θ∗ is actually supported on a subset
A ⊂ {1, 2, . . . , d} of cardinality s = |A|, then choosing S = A in the bound (16) yields an overall
convergence rate of O(s log dγ2 T ).

It is worthwhile comparing the convergence rate in Theorem 1 to alternative methods. A
standard approach to minimizing the objective (1) would be to perform stochastic gradient descent
directly on the objective, instead of considering our sequence of regularized problems (2). Under
the assumptions of Theorem 1, the expected loss is strongly convex with respect to the ℓ2-norm, so
that stochastic gradient descent (SGD) would converge at a rate O((G̃2+ σ̃2)/(γ2T )), for constants
G̃ and σ̃ chosen to satisfy the bounds

‖∇L(θ)‖2 ≤ G̃, and E

[
exp

(
‖e(θ)‖22/σ̃2

)]
≤ exp(1). (17)
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Under the assumptions of Example 1, we find that it suffices to choose G̃2 = Bd and similarly
for σ̃, so that SGD would converge at rate O( d

γ2T
). This generic guarantee scales linearly in the

problem dimension d, and fails to exploit any sparsity inherent to the problem. The key difference
between this naive application of stochastic gradient descent and our approach is that since we
minimize a regularized objective (2), our iterates tend to be (approximately) sparse. As a result,
we have a form of local strong convexity not only in ℓ2-norm but also with respect to ℓ1-norm;
this is a key observation in exploiting sparsity and strong convexity at the same time. Another
standard approach is to perform mirror descent or dual averaging, using the same prox-function as
Algorithm 1 but without breaking it up into epochs. As mentioned in the introduction, this vanilla
single-step method fails to exploit the strong convexity of our problem and obtains the inferior
convergence rate O(s

√
log d/T ).

A different proposal, closer in spirit to our approach, is to minimize a similar regularized ob-
jective (2), but with a fixed value of λ instead of the decreasing schedule of λi used in Theorem 1.
In fact, it can be obtained as a simple consequence of our proofs that setting λ = σ

√
log d/T leads

to an overall convergence rate of O
(

1
γ2

s log d
T

)
, a result analogous to the guarantee of Theorem 1.

Indeed, this procedure can be understood as applying the algorithm of Juditsky and Nesterov [14]
to the problem (1), but where the bounds are obtained using the additional technical machinery
introduced in this paper. However, with this fixed setting of λ, the initial epochs tend to be much
longer than required for reducing the error by a factor of one half. Indeed, our setting of λ is based
on minimizing the upper bound at each epoch, and leads to substantially improved performance
in our numerical simulations as well. The benefits of slowly decreasing the regularization in the
context of deterministic optimization were also noted in the recent work of Xiao and Zhang [31].

It is instructive to further simplify the the bounds by making further assumptions, allowing us
to quantify these terms concretely. We do in the following sections.

3.1.2 Some illustrative corollaries

We start with a corollary for the setting where the optimum θ∗ is supported on a subset S of
cardinality s, where s is a sparsity index between 1 and d. For these corollaries, so as to facilitate
comparison with minimax lower bounds, we use δ = ω2/(log d) as the parameter in specifying the
high-probability guarantees. Under these conditions, we recall our earlier notation κT (14) further
simplifies to

κT = log2

[
γ2R2

1T

s2 log d(G2 + σ2(1 + δ))

]
log d.

Within this setup, we have the following corollary of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, assume further that θ∗ takes non-zero values
only on a subset S ⊆ {1, . . . , d} of size s. Then for all T ≥ 2κT , there is a universal constant c0
such that

‖θ̂T − θ∗‖22 ≤ c0

[{G2 + σ2(1 + δ)}
γ2

s log d

T
+
sσ2

γ2T
log

κT
log d

]
(18)

with probability at least 1− 6 exp(−δ log d/12).

The corollary follows directly from Theorem 1 by noting that ε2(θ∗;S) = 0 under our assump-
tions. It is useful to note that the results on recovery for generalized linear models presented here
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match (up to O(log log T factors) those that have been developed in the statistics literature [18, 29],
which are optimal under the assumptions on the design vectors.

Theorem 1 also applies to the case when the optimum θ∗ is not exactly sparse, but only approx-
imately so. Such notions of approximate sparsity can be formalized by enforcing a certain decay
rate on the magnitudes, when ordered from smallest to largest. Here we consider the notion of
ℓq-“ball” sparsity: given a parameter q ∈ (0, 1] and a radius Rq, consider the set of all vectors such
that

Bq(Rq) :=
{
θ ∈ R

d |
d∑

j=1

|θj |q ≤ Rq

}
. (19)

For q = 1, this set reduces to an ℓ1-ball, whereas for q ∈ (0, 1), it is a non-convex but star-shaped
set contained within the ℓ1-ball. With these assumptions, our earlier notation κT further simplifies
to

κT = log2

[
R2

1

R2
q

(
γ2T

log d(G2 + σ2(1 + δ))

)−q
]
log d.

The following corollary captures the convergence of our updates for such problems.

Corollary 2. Under the conditions of Theorem 1, suppose moreover that θ∗ ∈ Bq(Rq) for some
q ∈ (0, 1]. Then there is a universal constant c0 such that for all T ≥ 2κT , we have

‖θ̂T − θ∗‖22 ≤ c0 Rq

[{{G2 + σ2(1 + δ)} log d
γ2T

}1−q/2

+

(
σ2

γ2T

)1−q/2
Rq

((1 + δ) log d)q/2
log

κT
log d

]
.

(20)

with probability at least 1− 6 exp(−δ log d/12).
Note that as q ranges over the interval [0, 1], reflecting the degree of sparsity, the convergence

rate ranges from O(1/T ) for q = 0 corresponding to exact sparsity, to O(1/
√
T ) for q = 1. This is a

rather interesting trade-off, showing in a precise sense how convergence rates vary quantitatively as
a function of the underlying sparsity. While it might seem like the worsening of rates as q increases
towards one defeats our original goal of obtaining fast rates by leveraging strong convexity of our
problem, this phenomenon is unavoidable due to existing lower bounds. More specifically, the
results on recovery for generalized linear models presented here exactly match those that have been
developed in the statistics literature [18, 29], which are optimal under our assumptions on the design
vectors. The reason for this phenomenon is that our goal of obtaining logarithmic dependence with
the dimension d requires strong convexity of the objective with respect to ℓ1-norm, while our LSC
assumption only guarantees strong convexity with respect to the ℓ2-norm. For a sparse optimum
θ∗, the local strong convexity assumption also translates into the desired ℓ1-strong convexity, but
the constant deteriorates as q increases from zero to one.

3.1.3 Stochastic optimization over finite pools

A common setting for the application of stochastic optimization methods in machine learning is
when one has a finite pool of examples, say {z1, . . . , zn}, and the goal is to compute

θ∗ ∈ argmin
θ∈Ω

{ 1

n

n∑

i=1

L(θ; zi)
}
. (21)

11



In this setting, a stochastic gradient g(θ) can be obtained by drawing a sample zj at random with
replacement from the pool {z1, . . . , zn}, and returning the gradient ∇L(θ; zj), which is unbiased as
an estimate of the gradient of the sample average (21).

In many applications, the dimension d is substantially larger than the sample size n, in which
case the sample loss defined above can never be strongly convex. However, it can be shown [23, 18]
that under suitable a condition, the sample objective (21) does satisfy a suitably restricted form of
the LSC condition formalized in Assumption 2, one that is valid even when d≫ n. As a result, the
generalized form of Theorem 1 we provide in Section 4.3 does apply to this setting as well and we
can obtain the following corollary. We will present this result only for settings where θ∗ is exactly
sparse, the extension to approximate sparsity is identical to the above discussion for obtaining
Corollary 2 from Corollary 1. Moreover, we also specialize to the logistic loss

L(θ; (x, y)) := log(1 + exp(−y〈θ, x〉)), (22)

which suffices to illustrate the main aspects of the result. We also introduce the shorthand
ψ(α) = exp(α)/(1 + exp(α))2, corresponding to the second derivative of the logistic function. Be-
fore stating the corollary, we state a condition on the design that is needed to ensure the RSC
condition. The condition is stated on the design matrix X ∈ R

n×d with xTi as its ith row.

Assumption 4 (Sub-Gaussian design). The design matrix X is sub-Gaussian with parameters
(Σ, η2x) if

(a) Each row xi ∈ R
d is sampled independently from a zero-mean distribution with covariance

Σ, and

(b) For any unit-norm vector u ∈ R
d, the random variable 〈u, xi〉 is sub-Gaussian with parameter

ηx, meaning that E[exp(t〈u, xi〉)] ≤ exp(t2η2x/2) for all t ∈ R.

In this setup, our definition of κT (14) is modified to

κT = log2

[
σ2min(Σ)ψ

2(2BR1)R
2
1T

s2B2(5 + 4δ) log d

]
log d.

We can now state a convergence result for this setup.

Corollary 3 (Logistic regression for finite pools). Consider the finite-pool loss (21), based on n i.i.d.
samples from a sub-Gaussian design with parameters (Σ, η2x). Suppose further that Assumptions 1
and 3 are satisfied and the optimum θ∗ of the problem (21) is s-sparse. Then there are universal
constants (c0, c1, c2, c3) such that for all T ≥ 2κT and n ≥ c3

log d
σ2
min

(Σ)
max(σ2min(Σ), η

4
x), we have

‖θ̂T − θ∗‖22 ≤
c0

σ2min(Σ)

s log d

T

{ 1

ψ2(2BR1)

{
B2(1 + δ)

}}
+ c0

sσ2

σ2min(Σ)ψ
2(2BR1)T

log
κT
log d

. (23)

with probability at least 1− 2 exp(−c1nmin(σ2min(Σ)/η
4
x, 1)) − 6 exp(−δ log d/12).

Once again we observe optimal dependence on the quantities s, log d, T and σ2min(Σ) in our
convergence rate. For the purposes of optimization, a dependence on the strong convexity of the
loss through 1/ψ2(2BR1) also seems unavoidable. Indeed, the lower bound of Agarwal et al. [1] for

12



the complexity of stochastic convex optimization with strongly convex objectives implies that such
a scaling is necessary for any stochastic first-order method. While the result in their Theorem 2 is
stated in terms of L(θ̂T )− L(θ∗) and posits a 1/γ scaling, it can be easily extended to also imply
a 1/γ2 scaling for the error ‖θ̂(T ) − θ∗‖22. Finally, we observe that the bound only holds once the
number of samples n in the objective (21) is large enough. This arises since the sample objective
is not strongly convex by itself, but does satisfy a restricted version of the LSC condition once the
sample size is large enough. These ideas are further clarified in the proof of the corollary that we
present in Section 4.4.2.

3.2 Optimal rates for least squares regression

In this section, we specialize to the case of least squares regression described previously in Exam-
ple 2. For ease of presentation, we further assume that the linear model assumption (11) holds.
Since the least-squares cost function is not Lipschitz over the entire set Ω, we need the general
local setting of our assumptions. For brevity, we introduce the shorthand notation Gi = G(2Ri)
and σi = σ(2Ri), and note that all of these parameters now depend on the epoch i.

The following theorem characterizes the convergence rate of Algorithm 1 for least-squares regres-
sion, when applied to independently and identically distributed (i.i.d.) samples generated from the
linear model (11) with B-bounded covariates (i.e., ‖x‖∞ ≤ B with probability one), and additive
Gaussian noise with variance η2. For this example, we (re)define

κT :=
s2B4 + γ2

γ2
(ω2 + log d) log2

[
γ2R2

1T

s2η2B2(ω2 + log d)

]
. (24)

In stating the result, we make use of the shorthand

ξT := log
κT γ

2

(s2B4 + γ2)(ω2 + log d)

Theorem 2. Consider the updates (5) with epoch lengths (12) and regularization/stepsize param-
eters

λ2i =
Riγ

s
√
Ti

√
(G2

i + σ2i ) log d+ ω2
i σ

2
i and αt = 5Ri

√
log d

(G2
i + λ2i + σ2i )t

. (25)

Then there is a universal constant c0 such that for any T ≥ 2κT and for any subset S of {1, . . . , d}
of cardinality s, we have

‖θ̂T − θ∗‖22 ≤
c0

σ2min(Σ)

[
sη2B2

T

(
ω2 + log d+ ξT

)
+ ε2(θ∗;S)

]

with probability at least 1− 6 exp(−ω2/12).

Once again, if we focus only on the scaling with iteration number T , the above theorem
gives an overall convergence rate of O(1/T ). The dominant term in the above bound scales as

O
(

η2B2

σ2
min

(Σ)
s log d
T

)
. In a stochastic optimization setting where each stochastic gradient is based on

drawing one fresh sample from the underlying distribution, the number of iterations T also corre-
sponds to the number of samples seen. In such a scenario, the above iteration complexity bound

13



is unimprovable in general due to matching sample complexity lower bounds for the sparse linear
regression problem [24]. This optimality is further clarified in the corollaries that we present below
for the exact and approximately sparse cases. The corollaries are analogous to our earlier result in
Corollaries 1 and 2 for the case of Lipschitz losses.

Corollary 4. Under the conditions of Theorem 2, we have the following guarantees.

(a) Exact sparsity: Suppose that θ∗ is supported on a subset of cardinality s. Then there is a
universal constant c0 such that for all T ≥ 2κT , we have

‖θ̂T − θ∗‖22 ≤ c0
s log d

T

η2B2

σ2min(Σ)
(1 + δ) + c0

sη2B2

Tσ2min(Σ)
ξT (26)

with probability at least 1− 6 exp(−δ log d/12).

(b) Weak sparsity: Suppose θ∗ ∈ Bq(Rq) for some q ∈ (0, 1]. Then there is a universal constant
c0 such that for all T ≥ 2κT , we have

‖θ̂T − θ∗‖22 ≤ c0 Rq

{
η2B2

σ2min(Σ)

log d(1 + δ) + ξT
T

}1−q/2

(27)

with probability at least 1− 6 exp(−δ log d/12).

Part (a) of the corollary follows from observing that ε2(θ∗;S) = 0 in the result of Theorem 2,
under our assumptions here. Part (b) involves setting S based on the assumption θ∗ ∈ Bq(Rq),
analogous to the proof of Corollary 2.

A corollary analogous to Corollary 3 can also be obtained from Theorem 2. This involves
replacing the use of the RSC assumption for the sample-averaged objective as before, and we leave
such a development to the reader.

3.3 A modified method with constant epoch lengths

Algorithm 1 as described is efficient and simple to implement. However, the convergence results
are based on epoch lengths Ti set in an appropriate “doubling” manner. In practice, this setting
might be difficult to achieve, since it is not immediately clear how to set the epoch lengths Ti
unless all of the problem parameters are provided. Juditsky and Nesterov [14] address this issue
by proposing an algorithm that uses fixed epoch lengths, and is also additionally robust to the
knowledge of problem parameters such as the strong convexity and Lipschitz constant. In this
section, we discuss how a similar approach with fixed epoch lengths also works in our set-up. At a
coarse level, if we have a total budget of T iterations, then this version of our algorithm allows us
to set the epoch lengths to O(log T ), and guarantees convergence rates that are O((log T )/T ), so
at most a log factor worse than our earlier results. We note that unlike past work, our objective
function changes at each epoch, which leads to certain new technical difficulties.

For ease of presentation in stating a fixed-epoch length result, we assume τ = 0 and γ = γ
throughout this section. We further restrict ourselves to the setting of Theorem 1 with Gi ≡ G
and σi ≡ σ, with the extension to least-squares case analogous to that for obtain Theorem 2.
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Theorem 3. Suppose the expected loss satisfies Assumptions 1- 3 with parameters Gi ≡ G, γ and
σi ≡ σ respectively. Recalling the setting of κT 14, suppose we run Algorithm 1 for a total of T
iterations with epoch length Ti ≡ T log d/κT , and with parameter settings (15). Assuming that the
above setting ensures that Ti = O(log d), for any subset S ⊆ {1, . . . , d} of cardinality at most s,

‖θ̂T − θ∗‖22 = O
(
s
(G2 + σ2) log d+ (ω2 + log(κT / log d))σ

2

T

log d

κT

)

with probability at least 1− 3 exp(ω2/12).

The theorem shows that up to logarithmic factors in T , not setting the epoch lengths optimally
is not critical which is an important practical concern. We note that a similar result can also be
proved for the case of least-squares regression.

4 Proofs of main results

We now turn to the proofs of our main results, which are all based on a proposition that characterizes
the convergence rate of the updates updates (5) within each epoch. Proving this intermediate
result requires combining the standard analysis of the dual averaging algorithm with the statistical
properties of the minimizer of the epoch objective fi at each epoch. We then build on this basic
convergence result using an iterative argument in order to establish our main Theorems 1 and 2.

4.1 Set-up and a general result

In our proofs, we use a weaker form of the local strong convexity (LSC) condition, known as locally
restricted strong convexity, or local RSC. This weakened condition allows us to adapt our proofs to
finite pool optimization (Corollary 3) in a seamless way, and also to establish slightly more general
versions of our main results:

Assumption 2′ (Locally restricted strong convexity) The function L : Ω → R satisfies a R-local
form of restricted strong convexity (RSC) if there are non-negative constants (γ, τ) such that

L(θ̃) ≥ L(θ) + 〈∇L(θ), θ̃ − θ〉+ γ

2
‖θ − θ̃‖22 − τ‖θ − θ̃‖21. (28)

for any θ, θ̃ ∈ Ω with ‖θ‖1 ≤ R and ‖θ̃‖1 ≤ R.

Note that this condition reduces to the standard form of local strong convexity in Assumption 2
when τ = 0. The key weakening here is the presence of the additional tolerance term—namely, the
quantity −τ‖θ− θ̃‖21. Due to this term, the lower bound (28) provides a nontrivial constraint only
for pairs of vectors θ, θ̃ such that γ

2‖θ− θ̃‖22 ≫ τ‖θ− θ̃‖21. Since the ratio of the ℓ1 and ℓ2 norms is a
measure of sparsity, the local RSC condition thus enforces local strong convexity only in directions
that are relatively sparse. As a concrete example, if the difference θ − θ̃ is s-sparse, then we have
‖θ − θ̃‖21 ≤ s ‖θ − θ̃‖22, so that the condition (28) guarantees that

L(θ̃)− L(θ) + 〈∇L(θ), θ̃ − θ〉
}
≥ 1

2

{
γ − 2sτ

}
‖θ − θ̃‖22, (29)
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a non-trivial statement whenever γ > 2sτ .
With this intuition, for applications of the condition (28) with τ 6= 0, we introduce the effective

RSC constant
γ = γ − 16sτ, (30)

where we have introduced the factor of 16 for later theoretical convenience. In addition, we use a
slightly generalized definition of the approximation-error term ε2(θ∗;S), namely

ε2(θ∗;S, τ) :=
‖θ∗Sc‖21
s

(
1 +

sτ

γ

)
, (31)

which reduces to ε2(θ∗;S) when τ = 0. So as to simplify notation, we use fi(θ) := L(θ) + λi‖θ‖1
to denote the objective at epoch i. Following standard notation in the optimization literature,
we also require a quantity Aψ such that Aψ ≥ ψ(θ) for all ‖θ‖1 ≤ 1; in our case, the choice of
prox-function (6) ensures that Aψ = e log d suffices. We also recall our notation ω2

i = ω2 + 24 log i.
We now state and prove a slightly generalized form of Theorem 1 that allows for τ > 0. It is

based on the epoch lengths

Ti := c1

[
s2γ2

γ4R2
i

(
Aψ(G

2 + σ2) + ω2
i σ

2
)
+
γAψ
γ

]
, (32)

where c1 is a universal constant. The more general form of Theorem 1 also involves the quantity

κT := log2

[
γ4R2

1T

γ2s2((G2 + σ2)Aψ + ω2σ2)

]
γ log d

γ
. (33)

It applies to the dual averaging updates (5) with the epoch lengths (32) and regularization/stepsize
parameters

λ2i =
Riγ

s
√
Ti

√
Aψ(G2 + σ2) + ω2

i σ
2, and αt = 5Ri

√
Aψ

(G2 + λ2i + σ2)t
. (34)

Theorem 4. Suppose the expected loss L satisfies Assumptions 1, 2′ and 3 with parameters
G(R) ≡ G, (γ, τ), and σ(R) ≡ σ respectively, and that we run Algorithm 1 with parameter set-
tings (34) and epoch lengths (32). Then there is universal constant c0 such that for any T ≥ 2κT ,
for any integer s ∈ [1, d] such that γ − 16sτ > 0, and for any subset S ⊂ {1, . . . , d} of cardinality
s, we have

‖θ̂T − θ∗‖22 ≤ c0

[
sγ2

γ4T

(
G2 log d+ σ2

(
log d+ ω2 + log κT

))
+
γ

γ
ε2(θ∗;S, τ)

]
. (35)

with probability at least 1− 6 exp(−ω2/12).

In order to prove this theorem, we require some intermediate results on the convergence rates within
each epoch. We state these results here, deferring their proofs to the appendices, before returning
to prove Theorem 1 and its corollaries.
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4.2 Convergence within a single epoch

This intermediate result applies to iterates generated using the dual averaging updates (5) for Ti
rounds with parameters (34), where G = Gi, and the error bound is stated in terms of the averaged
parameter at the ith epoch, namely the vector θ̄(Ti) :=

1
Ti

∑Ti
t=1 θ

t.

Proposition 1. Suppose L satisfies Assumptions 1, 2′ and 3 with parameters Gi, (γ, τ) and σi
respectively, and assume that ‖θ∗ − yi‖p ≤ Ri. Suppose we apply the updates (5) with stepsizes
based on equation (34). Then there exists a universal constant c > 0 such that for any radius
R2
i ≥ 4γε2(θ∗;S, τ)/γ, any integer s ∈ [1, d] such that γ − 16sτ > 0, and any subset S ⊆ {1, . . . , d}

of cardinality at most s, we have

fi(θ̄(Ti))− fi(θ̂i) ≤ 30Ri

√
2Aψ(G

2
i + σ2i )

Ti
+
ωiσiRi√

Ti
+ 30Riλi

√
Aψ
Ti

and (36a)

‖θ̄(Ti)− θ∗‖21 ≤ c
γ

γ

[
sRi

γ
√
Ti

(√
Aψ(G

2
i + σ2i ) + ωiσi

)
+
R2
iAψ
Ti

+ ε2(θ∗;S, τ)

]
, (36b)

where both bounds are valid with probability at least 1− 3 exp(−ω2
i /12) for any ωi ≤ 9

√
log Ti.

On one hand, inequality (36a) is a relatively direct consequence of known convergence results
about stochastic dual averaging [22]. On the other hand, the bound (36b)—which plays a central
role in the our proofs—requires some additional statistical properties of the optimal solution at each
epoch i. See Appendix B for further details on these properties, and the proof of Proposition 1.

Before moving on, we note that the bounds in Proposition 1 can be simplified further based on
the parameter settings in equations (32) and (34). Substituting these choices in our bounds yields
the inequalities

fi(θ̄(Ti))− fi(θ̂i) ≤ c
R2
i γ

2

sγ
and (37a)

‖θ̄(Ti)− θ∗‖21 ≤ c

[
R2
i +

γ

γ
sε2(θ∗;S, τ)

]
. (37b)

In addition to this proposition, we need to state two more technical lemmas, the first of which
bounds the error ∆i := θ̂i − θ∗.

Lemma 1. At epoch i, assume that ‖θ∗ − yi‖p ≤ Ri. Then the error ∆i = θ̂i − θ∗ satisfies the
bounds

‖θ̂i − θ∗‖2 ≤
4

γ

√
sλi + 2

√
λi‖θ∗Sc‖1 + 4τ‖θ∗Sc‖21

γ
, and (38a)

‖θ̂i − θ∗‖1 ≤
8

γ
sλi + 4

√
s(λi‖θ∗Sc‖1 + 4τ‖θ∗Sc‖21)

γ
+ 2‖θ∗Sc‖1. (38b)

For future reference, it is convenient to note that the bound (38b) implies that

‖θ∗ − θ̂i‖1 ≤
9

γ
sλi + 8‖θ∗Sc‖1

√
τs

γ
+ 6‖θ∗Sc‖1, (39)
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where we have made use of the elementary inequalities
√
a+ b ≤ √

a+
√
b and 2

√
ab ≤ a+ b, valid

for all non-negative a, b.

Our next lemma provides a simplified version of the RSC condition that holds under conditions
of Proposition 1. The lemma is stated in terms of the error

∆̂(Ti) := θ̄(Ti)− θ̂i (40)

between the average θ̄(Ti) :=
1
Ti

∑Ti
t=1 θ

t over trials 1 through Ti in epoch i, and the epoch optimum θ̂i.

Lemma 2. Under conditions of Proposition 1 and with parameter settings (32) and (34), we have

γ

2
‖∆̂(Ti)‖22 ≤ fi(θ̄(Ti))− fi(θ̂i) + c τ

(
γ

γ
R2
i + sε2(θ∗;S, τ)

)

with probability at least 1− 3 exp(−ω2
i /12).

4.3 Proof of Theorem 4

We are now equipped to prove Theorem 4. The proof will be broken down into cases, corresponding
to whether T is “too large” or not. We recall that KT is the total number of epochs performed
after T steps in Algorithm 1.

We first consider iterations for which the bound

R2
KT ≥ 4γ

γ
s ε2(θ∗;S, τ) (41)

is satisfied. We then provide an additional lemma which allow us to control the iterates for epochs
i after which the squared R2

i violates the bound (41).

4.3.1 Proof assuming inequality (41) holds

Our first step is to ensure that the bound ‖θ∗ − yi‖p ≤ Ri holds at each epoch i, so that Proposition 1
can be applied in a recursive manner. We prove this intermediate claim by induction on the epoch
index. By construction, this bound holds at the first epoch. Assume that it holds for epoch i.
Recall that the epoch length setting in Theorem 4 is of the form

Ti = C

[
s2γ2

γ4R2
i

(
Aψ(G

2 + σ2) + ω2
i σ

2
)
+
γAψ
γ

]
,

where C ≥ 1 is a constant that we are free to choose. Upon substituting this setting of Ti in the
inequality (36b), the simplified bound (37b) further yields

‖θ̄(Ti)− θ∗‖21 ≤
c√
C

(
R2
i +

γs

γ
ε2(θ∗;S, τ)

)
(i)

≤ c′√
C
R2
i ,

where step (i) follows due to our assumption R2
i ≥ 4γsε2(θ∗;S, τ)/γ. Thus, by choosing C suffi-

ciently large, we may ensure that ‖θ̄(Ti)− θ∗‖21 ≤ R2
i /2 := R2

i+1. Consequently, if θ∗ is feasible at
epoch i, it stays feasible at epoch i + 1, and so by induction, we are guaranteed the feasibility of
θ∗ throughout the run of the algorithm by induction.
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As a result, Lemma 2 applies, and we find that

γ

2
‖∆̂(Ti)‖22 ≤ fi(θ̄(Ti))− fi(θ̂i) + c τ

(
γ

γ
R2
i + sε2(θ∗;S, τ)

)

with probability at least 1−3 exp(−ω2
i /12). Appealing to the simplified form (37a) of Proposition 1,

we can further obtain the inequality

γ

2
‖∆̂(Ti)‖22 ≤ c

R2
i γ

2

sγ
+ c τ

(
γ

γ
R2
i + sε2(θ∗;S, τ)

)
.

Recalling that γ = γ + 16sτ , the above bound further simplifies to

γ

2
‖∆̂(Ti)‖22 ≤ c

(
R2
i γ

s
+ sτε2(θ∗;S, τ)

)
. (42)

We have now bounded ∆̂(Ti) = θ̄(Ti) − θ̂i, and Lemma 1 provides a bound on ∆i = θ̂i − θ∗,
so that the error ∆∗(Ti) = θ̄(Ti) − θ∗ can be controlled using triangle inequality. In particular,
combining inequality (38a) with the bound (42), we find that

‖∆∗(Ti)‖22 ≤ c

[
R2
i

s
+
τsε2(θ∗;S, τ)

γ
+
sλ2i
γ2

+
λi‖θ∗Sc‖1 + τ‖θ∗Sc‖21

γ

]
.

Since 2λi‖θ∗Sc‖1 ≤
sλ2i
γ +

γ‖θ∗
Sc

‖1
s by Cauchy-Schwartz inequality, we can further simplify the above

bound to obtain

‖∆∗(Ti)‖22 ≤ c

[
R2
i

s
+
τsε2(θ∗;S, τ)

γ
+
sλ2i
γ2

+
‖θ∗Sc‖21
s

(
1 +

τs

γ

)]
.

Substituting our choice of λi and Ti from equations (34) and (32) respectively yields the final bound

‖∆∗(Ti)‖22 ≤ c

[
R2
i

s
+ ε2(θ∗;S, τ)

(
1 +

sτ

γ

)]
,

a bound that holds probability at least 1− 3 exp(−ω2
i /12). Recalling that R2

i = R2
12

−(i−1), we see
that the error after i epochs is at most

‖∆∗(Ti)‖22 ≤ c

[
R2

12
−(i−1)

s
+ ε2(θ∗;S, τ)

(
1 +

sτ

γ

)]
.

Since γ = γ + 16sτ , some algebra then leads to

‖∆∗(Ti)‖22 ≤ c

[
R2

12
−(i−1)

s
+ ε2(θ∗;S, τ)

γ

γ

]
, (43)

with probability at least 1− 3
∑i

j=1 exp(−ω2
j/12). Recalling our setting ω2

i = ω2 + 24 log i, we can
apply the union bound and simplify the error probability as

i∑

j=1

exp(−ω2
j/12) =

i∑

j=1

exp(−(ω2 + 24 log j)/12) = exp(−ω2/12)

i∑

j=1

1

j2
.
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As a result, we can upper bound the net probability of our bounds failing after the KT epochs
performed by Algorithm 1 as

KT∑

j=1

3 exp(−ω2
j/12) ≤

∞∑

j=1

3 exp(−ω2
j/12) ≤ 3 exp(−ω2/12)

∞∑

j=1

1

j2
≤ 3π2

6
exp(−ω2/12),

where the last step follows summing the infinite series. Finally noting that π2/6 ≤ 2 gives us the
stated probability of 1 − 6 exp(−ω2/12) with which our bounds hold. In order to complete the
proof of the theorem, we need to convert the error bound (43) from its dependence on the number
of epochs KT to the number of iterations T . This requires us to obtain KT in terms of T , which
we do next. Letting T (K) be the number of iterations needed to complete K epochs, we start by
computing an upper bound g(K) on T (K) based on our epoch length setting (32). Then inverting
the bound allows us to deduce the lower bound KT ≥ g−1(T ), which allows us to obtain error
bounds in terms of T .

T (K) =
K∑

i=1

Ti =
K∑

i=1

c

[
s2γ2

γ4R2
i

(
Aψ(G

2 + σ2) + (ω2 + 24 log i)σ2
)
+
γAψ
γ

]

= c

[
s2γ2

γ4R2
1

(
Aψ(G

2 + σ2) + (ω2 + 24 logK)σ2
) K∑

i=1

2i−1 +
γAψ
γ

K

]

≤ c

[
s2γ2

γ4R2
1

(
Aψ(G

2 + σ2) + (ω2 + 24 logK)σ2
)
2K +

γAψ
γ

K

]

︸ ︷︷ ︸
:=g(K)

where the last inequality sums the geometric progression. Inverting the above inequality to obtain
g−1(T ), along with some straightforward algebra completes the proof.

4.3.2 Case 2: Extension to arbitrary KT

As we observed in the previous section, when the bound (41) holds, we can ensure that θ∗ stays
feasible at each epoch, thereby allowing us to use the error bounds from Proposition 1. However,
once T becomes large enough, the bound (41) will no longer hold, so that the the feasibility of θ∗

for subsequent epochs can no longer be guaranteed. In this section, we deal with this remaining
set of iterations. In particular, let us define the critical epoch number

K∗
T := argmax

{
k ≥ 1 | R2

k ≥
4γ

γ
s ε2(θ∗;S, τ)

}
, (44)

beyond which the bound (41) no longer holds. By the definition of K∗
T , we are guaranteed that

R2
K∗

T
≥ 4γ

γ
s ε2(θ∗;S, τ)

(i)

≥ R2
K∗

T
+1

(ii)
= R2

K∗

T
/2,

where inequality (i) follows since K∗
T is the largest epoch for which the bound (41) holds, and step

(ii) follows from our setting R2
i+1 = R2

i /2.
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Now our earlier argument applies to all epochs k ≤ K∗
T , and it guarantees that after K∗

T epochs,
we have

‖yK∗

T
− θ∗‖22 ≤ c

(
R2
K∗

T

s
+ ε2(θ∗;S, τ)

γ

γ

)
≤ c ε2(θ∗;S, τ)

γ

γ
, (45a)

‖yK∗

T
− θ∗‖21 ≤ c

(
R2
K∗

T
+
γs

γ
ε2(θ∗;S, τ)

)
≤ c

γs

γ
. (45b)

with probability at least 1− 3
( K∗

T∑
i=1

1
i2

)
exp(−ω2/12).

Our approach for the remaining epochs k > K∗
T is to show that even though θ∗ may no longer

be feasible, the error of the algorithm cannot get significantly worse than that at epoch K∗
T . In

order to do so, we need an additional lemma.

Lemma 3. Suppose that Assumptions 1, 2′ and 3 are satisfied with parameters Gi, (γ, τ) and σi
respectively at epochs i = 0, 1, 2, . . .. Assume that at some epoch k, the prox center yk satisfies the
bound ‖yk − θ∗‖2 ≤ c1Rk/

√
s, and that for all epochs j ≥ k, the epoch lengths satisfy the bounds

γs

γ2

√
Aψ(G

2
j + σ2j ) + ω2

jσ
2
j

Tj
≤ Rk

2
, and

Aψ
Tj

≤ c2.

Then for all epochs j ≥ k, we have the error bound ‖yj − θ∗‖22 ≤ c3
R2
k

s with probability at least

1− 3
∑j

i=k+1 exp(−ω2
i /12).

See Appendix C for the proof of this lemma.

Equipped with this lemma, the remainder of the proof is straightforward. Specifically, inequal-
ity (45a) ensures that for all epochs j ≥ K∗

T , we have

‖yK∗

T
− θ∗‖22 ≤ c

(
R2
K∗

T

s
+ ε2(θ∗;S, τ)

γ

γ

)
(i)

≤ c
R2
K∗

T

s
,

with probability at least 1− 3
(∑K∗

T

i=1
1
i2

)
exp(−ω2/12). Here step (i) follows from our definition of

K∗
T . Now we apply Lemma 3 to conclude that if KT ≥ K∗

T , then

‖yK∗

T
− θ∗‖22 ≤ c

(
R2
K∗

T

s

)
≤ c

γ

γ
ε2(θ∗;S, τ)

with probability at least 1−3
(∑KT

i=1
1
i2

)
exp(−ω2/12). Finally, observing that the overall probability

of our bounds failing is at most 6 exp(−ω2/12) as before, we see that the statement of Theorem 4
holds in this case as well, thereby completing the proof.

4.4 Proofs of Corollaries 2 and 3

In this section, we will establish the corollaries of Theorem 1. We start with Corollary 2 before
moving on to Corollary 3, the latter needing our more general statement of Theorem 4.
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4.4.1 Proof of Corollary 2

The corollary follows from Theorem 1 by making a particular choice of S based on our assumption
θ∗ ∈ Bq(Rq). Specifically, given a parameter ϕ > 0, define

|Sϕ| = and Sϕ := {j ∈ {1, . . . , d} | |θ∗j | ≥ |θ∗i | for all i /∈ Sϕ},
to be the set of Rqϕ

−q indices corresponding to the largest coefficients of θ∗ in absolute value. Given
this definition, some straightforward algebra yields that |θ∗i | ≤ ϕ for all i /∈ Sϕ, which further yields
‖θ∗Scϕ‖1 ≤ ϕ1−qRq. (For instance, see Negahban et al. [18] for more detail on these calculations.)

With these choices, the error bound of Theorem 1 simplifies to

‖θ̂T − θ∗‖22 ≤ c
{ϕ−qRq

γ2T
((G2 + σ2) log d+ ω2σ2) +

R2
qϕ

2−2q

Rqϕ−q

}
.

This upper bound is minimized by setting ϕ∗ :=
√

(G2+σ2) log d+ω2σ2

γ2T
; substituting this choice and

performing some algebra yields the claim of the corollary.

4.4.2 Proof of Corollary 3

In order to prove this result, we must first demonstrate that the RSC condition holds. For notational
simplicity, we introduce the shorthand

Ln(θ) :=
n∑

i=1

L(θ; (xi, yi)) =
n∑

i=1

log
[
1 + exp(yi〈θ, xi〉

)]
.

Performing a Taylor series expansion of θ̃ around θ yields

Ln(θ̃)− Ln(θ)− 〈∇Ln(θ), θ̃ − θ〉 = 1

n

n∑

i=1

ψ(ai)〈xi, θ − θ̃〉2,

where ψ(t) = exp(t)
[1+exp(t)]2 is the second derivative of the logistic function, and ai := 〈αθ+(1−α)θ̃, xiyi〉

for some α ∈ [0, 1].
Under the assumptions of Corollary 3, we further know that |ai| ≤ 2BR1, and hence that

ψ(ai) ≥ ψ(2BR1). Consequently, in order to establish the local RSC condition (28), it suffices
to lower bound the quantity

1

n

n∑

i=1

〈xi, θ − θ̃〉2 = 1

n
‖X(θ − θ̃)‖22,

where X ∈ R
n×d is the design matrix, with the vector xTi as its ith row. Quantities of this form

have been studied in random matrix theory and sparse statistical recovery. We state a specific
result that holds under our conditions, and provide a proof in Appendix D.

Lemma 4. Under the conditions of Corollary 3, there are universal constants c, c1 such that we
have

‖Xv‖22
n

≥ σmin(Σ)

2
‖v‖22 − c

log d

n
max

{
σmin(Σ),

η4x
σmin(Σ)

}
‖v‖21 for all v ∈ R

d

with probability at least 1− 2 exp(−c1nmin(σ2min(Σ)/η
4
x, 1)),
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Consequently, the local RSC (28) condition holds with

γ =
σmin(Σ)ψ(2BR1)

2
and τ = c

log d

n
max

{
σmin(Σ),

η4x
σmin(Σ)

}
.

Substituting these values in the general statement in Theorem 4 completes the proof of the corollary.

4.5 Proof of Theorem 2

The main difference from the proof of Theorem 1 is that here we obtain improving bounds on the
Lipschitz and sub-Gaussian constants at each epoch. Recalling that ‖θt − θ∗‖1 ≤ 2Ri at epoch
i, a little calculation shows that Gi ≤ 2‖Σ‖∞Ri, where ‖Σ‖∞ is the elementwise ℓ∞ norm of Σ.
Since Σ is positive-semidefinite, we can further conclude that ‖Σ‖∞ ≤ ρ(Σ). Assuming further that
‖x‖∞ ≤ B, we see that ρ(Σ) ≤ B. We further have the bound

‖gt‖2∞ = ‖(〈xt, θt〉 − yt)xt‖2∞
≤ 2‖〈xt, θt − θ∗〉xt‖2∞ + 2‖xtwt‖2∞
≤ 8B4R2

i + 2B2w2
t .

Since wt ∼ N (0, η2), it is easy to check that

E

[
exp(w2

t /σ
2
0)
]
≤ exp(1), where σ0 = e η

√
2

e2 − 1
≤ 3η,

so that Assumption 3 is satisfied with σ2i = c
[
B4R2

i +B2η2
]
, for a universal constant c. Plugging

these quantities into our earlier bound from Proposition 1 on the epoch length, we observe that
with probability at least 1− 3 exp(−ω2

i /12) the number of iterations needed at epoch i is at most

Ti ≤ c

[
s2γ2

γ4R2
i

(
B4R2

i + η2B2
)
(ω2
i + log d) +

γ log d

γ

]

≤ c

[
s2η2B2γ2

γ2R2
i

(ω2
i + log d) +

s2γ2

γ4
(B4 + 1)(ω2 + log d)

]
.

We can now mimic our earlier argument to obtain the total number of iterations across all epochs.

4.6 Proof of Theorem 3

The proof relies on an additional technical lemma in addition to our earlier development. In order
to prove the theorem, we observe that the key argument in the convergence analysis of Section 4
was the ability to reduce the error to the optimum θ∗ by a multiplicative factor after every epoch.
However, with a fixed epoch length T0, it may not be possible to continue reducing the error once
the number of epochs becomes large enough. This is analogous to the difficulty we encountered in
the proof of Theorem 4, and will again be addressed using Lemma 3. We start by deducing the
epoch number k∗ such that we successfully halve the error at each epoch up to k∗. We will then
use other arguments to demonstrate that the error does not increase much for epochs k > k∗, and
this requires some delicate treatment of our changing objective functions. Specifically, given a fixed
epoch length T0 = O(log d), we define

k∗ := sup

{
i : 2j/2+1 ≤ cR1γ

s

√
T0

(G2
j + σ2j ) log d+ ω2σ2j

for all epochs j ≤ i

}
. (46)
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We start with a simple lemma, showing that Algorithm 1 run with fixed epoch lengths T0 has
the desired behavior for the first k∗ epochs.

Lemma 5. Suppose that T0 = O(log d) and define k∗ based on equation (46). Then we have

‖yk − θ∗‖1 ≤ Rk and ‖yk − θ̂k‖1 ≤ Rk for all 1 ≤ k ≤ k∗ + 1

with probabilty at least 1 − 3k exp(−ω2/12). Under the same conditions, there is a universal
constant c such that

‖yk − θ∗‖2 ≤ c
Rk√
s

and ‖yk − θ̂k‖2 ≤ c
Rk√
s

for all 2 ≤ k ≤ k∗ + 1.

The key challenge in proving the theorem is understanding the behavior of the method after
the first k∗ epochs. Since the algorithm cannot guarantee that the error to θ∗ will be halved for
epochs beyond k∗, we can no longer guarantee that θ∗ will even be feasible at the later epochs.
However, this is exactly the same problem that arose in the proof of Theorem 4. Specifically, we
can use Lemma 3 in order to control the error after the first k∗ epochs.

In order to check the condition on epoch lengths in Lemma 3, we begin by observing that by
the definition (46) of k∗, we know that

c
s

γ

√
Aψ(G

2
k∗ + σ2k∗) + ω2σ2k∗

T0
≤ R12

−k∗/2−1 =
Rk∗+1

2
. (47)

Since we assume that the constants Gk, σk are decreasing in k, the inequality also holds for all
k ≥ k∗ + 1, so that Lemma 3 applies in our setup here. We further observe that the setting of the
epoch lengths in Theorem 3 ensures that the total number of epochs we perform is

k0 = log

(
R1γ

s

√
T

(G2 + σ2) log d+ ω2σ2

)
.

Now we have one of two possibilities. Either k0 ≤ k∗ or k0 ≥ k∗. In the first case, Lemma 5
ensures the error bound ‖yk0 − θ∗‖22 ≤ cR2

k0
/s applies. In the second case, we appeal to Lemma 3

and obtain an error bound of cR2
k∗/s. The proof is completed by substituting our choices of k0 and

k∗ in these bounds.

5 Simulations

In this section, we present the results of various numerical simulations that illustrate different
aspects of our theoretical convergence results. We focus on least-squares regression, described in
more detail in Example 2. Specifically, we generate samples (xt, yt) with each coordinate of xt
distributed as Unif[−B,B] and yt = 〈θ∗, xt〉+ wt. We pick θ∗ to be sparse vector with s = ⌈log d⌉
non-zero co-ordinates, and wt ∼ N (0, η2) where η2 = 0.5. Given an iterate θt, we generate a
stochastic gradient of the expected loss (1) at (xt, yt). For the ℓ1-norm, we pick the sign vector of
θt, with 0 for any component that is zero, a member of the ℓ1-sub-differential.

Our first set of results evaluate Algorithm 1 against other stochastic optimization baselines,
where all algorithms are given complete knowledge of problem parameters. In this first set of
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simulations, we terminate epoch i once ‖yi+1 − θ∗‖2p ≤ ‖yi− θ∗‖2p/2, which ensures that θ∗ remains
feasible throughout, and tests the performance of Algorithm 1 in the most favorable scenario. We
compare the algorithm against two baselines. The first baseline is the regularized dual averaging
(RDA) algorithm [30], applied to the regularized objective (4) with λ = 4η

√
log d/T , which is

the statistically optimal regularization parameter with T samples. We use the same prox-function

ψ(θ) =
‖θ‖2p

2(p−1) , so that the theory [30] for RDA predicts a convergence rate of O(s
√
log d/T ).

Our second baseline is the stochastic gradient (SGD) algorithm, a method that exploits the strong
convexity but not the sparsity of the problem (1). Since the squared loss is not uniformly Lipschitz,
we impose an additional constraint ‖θ‖1 ≤ R1, without which the algorithm does not converge. The
results of this comparison are shown in Figure 1, where we present the error ‖θt − θ∗‖22 averaged
over 5 random trials. We observe that RADAR comprehensively outperforms both the baselines,
confirming the predictions of our theory.
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Figure 1. A comparison of RADAR with the RDA and SGD algorithms for d = 20000 (left) and
d = 40000 (right). We plot ‖θt − θ∗‖2

2
averaged over 5 random trials versus the number of iterations.

Our second set of results provides comparisons to algorithms that are tailored to exploit sparsity.
Our first baseline here is the approach that we described in our remarks following Theorem 1. In
this approach, we use the same multi-step strategy as Algorithm 1 but keep λ fixed. We refer
to this as Epoch Dual Averaging (henceforth EDA), and again employ λ = 4η

√
(log d)/T with

this strategy. To maintain a fair comparison with the RADAR algorithm, our epochs are again
terminated by halving of the squared ℓp-error measured relative to θ∗. Finally, we also evaluate the
version of our algorithm with constant epoch lengths, as analyzed in Theorem 3 using epochs of
length log(T ), and henceforth referred to as RADAR-CONST. As shown in Figure 2, the RADAR-
CONST has relatively large error during the initial epochs, before converging quite rapidly, a
phenomenon consistent with our theory.2 Even though the RADAR-CONST method does not use

2To clarify, the epoch lengths in RADAR-CONST are set large enough to guarantee that we can attain an overall
error bound of O(1/T ), meaning that the initial epochs for RADAR-CONST are much longer than for RADAR.
Thus, after roughly 500 iterations, RADAR-CONST has done only 2 epochs and operates with a crude constraint set
Ω(R1/4). During epoch i, the step size scales proportionally to Ri/

√
t, where t is the iteration number within the

epoch; hence, when Ri is large, the relatively large initial steps in an epoch can take us to a bad solution even when
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the knowledge of θ∗ to set epochs, all three methods exhibit the same eventual convergence rates,
with RADAR (set with optimal epoch lengths) performing the best. Although RADAR-CONST
is very slow in initial iterations, its convergence rate remains competitive with EDA (even though
EDA does exploit knowledge of θ∗), but is worse than RADAR as expected.

Overall, our experiments demonstrate that RADAR and RADAR-CONST have practical per-
formance consistent with our theoretical predictions. Although optimal epoch length setting is not
too critical for our approach, better data-dependent empirical rules for determining epoch lengths
remains an interesting question for future research. The relatively poorer performance of EDA
demonstrates the importance of our decreasing regularization schedule.
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Figure 2. A comparison of RADAR with EDA and RADAR-CONST for d = 20000 (left) and
d = 40000 (right). We plot ‖θt − θ∗‖2

2
averaged over 5 random trials versus the number of iterations.

6 Discussion

In this paper, we presented an algorithm that is able to take advantage of the strong convexity
and sparsity conditions that are satsified by many common problems in machine learning. Our
algorithm is simple and efficient to implement, and for a d-dimensional objective with an s-sparse
optima, it achieves the minimax-optimal convergence rate O(s log d/T ). We also demonstrate
optimal convergence rates for problems that have weakly sparse optima, with implications for
problems such as sparse linear regression and sparse logistic regression. While we focus our attention
exclusively on sparse vector recovery due to space constraints, the ideas naturally extend to other
structures such as group sparse vectors and low-rank matrices [18]. It would be interest to study
similar developments for other algorithms such as mirror descent or Nesterov’s accelerated gradient
methods, leading to multi-step variants of those methods with optimal convergence rates in our
setting.

we start with a good solution yi. As Ri decreases further with more epochs, this effect is mitigated and the error of
RADAR-CONST does rapidly decrease like our theory predicts.
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A Closed-form updates

In this appendix, we derive a closed form expression for the update (5b) when Ω = R
d. Re-

calling our definition of the prox-function (6), the constraint θt+1 ∈ Ω(Ri) can be rewritten as
ψyi,Ri(θ) ≤ 2(p − 1). We now form the Lagrangian at iteration t+ 1

αt+1〈µt+1, θ〉+ ψyi,Ri(θ) + ξ(ψyi,Ri(θ)− 2(p − 1)),

where ξ ≥ 0 is the Lagrangian parameter. The first-order optimality condition for the Lagrangian
allows us to conclude that αt+1µt+1 +∇ψyi,Ri(θt+1)(1 + ξ) = 0, so that the iterate at time t+ 1 is
given by

θt+1 = ∇ψ∗
yi,Ri

(
−α

t+1µt+1

1 + ξ

)
,

where ψ∗
yi,Ri

(µ) denotes the Fenchel conjugate [13]. Recalling the form of our prox-function, we
have

ψyi,Ri(θ) =
1

2(p − 1)R2
1

‖θ − yi‖2p and ψ∗
yi,Ri(µ) = 〈yi, µ〉+

(p− 1)R2
i

2
‖µ‖2q ,

where q = p/(p − 1) is the conjugate exponent to p. This is a straightforward consequence of the
Fenchel duality of ℓp norms (e.g., see Example 6.0.2 [13]).

We can now take the gradient of the dual function to obtain the following closed form expression

θt+1 = yi +
R2
i (p− 1)αt+1

(1 + ξ)
|µt+1|(q−1)sign(µt+1)‖µt+1‖(2−q)q .

The value of ξ can now be obtained by backsubstitution in the constraint θ ∈ Ω(Ri). Doing so and
performing some algebra yields

ξ := max
{
0, (p − 1)αt+1‖µt+1‖qRi − 1

}
,

where |µt+1|(q−1) refers to taking the absolute values and exponents elementwise and q = p/(p− 1)
is the conjugate exponent to p.

B Proofs for convergence within a single epoch

In this appendix, we prove various results on convergence behavior within a single epoch, including
Lemmas 1 and 2 as well as Proposition 1.
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B.1 Proof of Lemma 1

By the optimality of θ̂i, we have

L(θ̂i) + λi‖θ̂i‖1 ≤ L(θ∗) + λi‖θ∗‖1. (48)

From the local RSC assumption (28), for any vector θ feasible during epoch i, we have the lower
bound

L(θ) ≥ L(θ∗) + 〈∇L(θ∗), θ − θ∗〉+ γ

2
‖θ − θ∗‖22 − τ‖θ − θ∗‖21

(i)

≥ L(θ∗) + γ

2
‖θ − θ∗‖22 − τ‖θ − θ∗‖21, (49)

where step (i) follows since θ∗ minimizes L(θ). Applying inequality (49) with θ = θ̂i and combining
with the initial bound (48) yields

L(θ̂i) + λi‖θ̂i‖1 ≤ L(θ̂i)−
γ

2
‖θ̂i − θ∗‖22 + τ‖θ̂i − θ∗‖21 + λi‖θ∗‖1.

Using the definition θ∗ = θ̂i +∆i and triangle inequality, we can further simplify to obtain

λi‖θ̂i‖1 ≤ λi‖θ∗‖1 −
γ

2
‖θ∗ − θ̂i‖22 + τ‖θ̂i − θ∗‖21 ≤ λi‖θ̂i‖1 + λi‖∆i‖1 −

γ

2
‖∆i‖22 + τ‖∆i‖21,

Rearranging the terms above yields

γ

2
‖∆i‖22 ≤ λi‖∆i‖1 + τ‖∆i‖21 ≤ 2

√
sλi‖∆i‖2 + 2λi‖θ∗Sc‖1 + 8sτ‖∆i‖22 + 8τ‖θ∗Sc‖21.

Some elementary algebra then yields that ǫ := ‖∆i‖2 satisfies the quadratic inequality

1

2

{
γ − 16sτ

}
ǫ2 −

{
2
√
sλi
}
ǫ−

{
2λi‖θ∗Sc‖1 + 8τ‖θ∗Sc‖21

}
≤ 0,

which then implies the ℓ2-error bound (38a).

In order to establish the ℓ1-error bound (38b), we require an auxiliary lemma that allows us to
translate between the ℓ2 and ℓ1-norms:

Lemma 6. For any pair of vectors θ, θ̃ ∈ Ω, suppose that ‖θ̃‖1 ≤ ‖θ‖1 + ǫ for some ǫ ≥ 0. Then
for any set A ⊆ {1, 2, . . . , d}, the vector ∆ := θ − θ̃ satisfies the inequality

‖∆Ac‖1 ≤‖∆A‖1 + 2‖θAc‖1 + ǫ. (50)

Proof. Since A and Ac are disjoint, the bound assumed in the lemma statement can be written

‖θ̃A‖1 + ‖θ̃Ac‖1 ≤ ‖θA‖1 + ‖θAc‖1 + ǫ. (51)

Since θ̃ = ∆+ θ by definition, triangle inequality implies that

‖θ̃A‖1 ≥ ‖θA‖1 − ‖∆A‖1 and ‖θ̃Ac‖1 ≥ ‖∆Ac‖1 − ‖θAc‖1.

Substituting into the bound (51), we obtain

‖∆Ac‖1 − ‖θAc‖+ ‖θA‖1 − ‖∆A‖1 ≤ ‖θA‖1 + ‖θAc‖1 + ǫ,

and rearranging terms completes the proof.
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In particular, applying Lemma 6 to the pair θ = θ̂i, and θ̃ = θ∗ with the tolerance ǫ = 0 and
the subset A = S, we find that the error vector ∆i := θ̂i − θ∗ satisfies the bounds

‖(∆i)Sc‖1 ≤ ‖(∆i)S‖1 + 2‖θ∗Sc‖1. (52)

Consequently, we have

‖∆i‖1 = ‖(∆i)S‖+ ‖(∆i)Sc‖1 ≤ 2‖(∆i)S‖1 + 2‖θ∗Sc‖1 ≤ 2
√
s‖(∆i)S‖2 + 2‖θ∗Sc‖1, (53)

where the final step uses the fact that (∆i)S is an s-vector.

B.2 Proof of Proposition 1: Inequality (36a)

We are now equipped to prove Proposition 1, beginning with the first bound (36a). Introducing
the convenient shorthand et = gt−∇L(θt), our assumptions guarantee that there are constants Gi

and σi such that E exp
(
‖et‖2

∞

σ2i

)
≤ exp(1), and

|L(θ)−L(θ̃)| ≤ Gi‖θ − θ̃‖1 for all θ, θ̃ satisfying ‖θ − yi‖1 ≤ Ri. (54)

Our starting point is a known result for the convergence of the stochastic dual averaging algorithm.
Recalling the definition θ̄(T ) =

∑T
t=1 θ

t/T , and letting ĝt = gt+λiν
t be the stochastic subgradient

at iteration t, we have

fi(θ̄(T ))− fi(θ̂i) ≤
1

2T

T∑

t=1

αt−1

γψ
‖ĝt‖2∞ +

1

TαT
ψyi,Ri(θ̂i)−

1

T

T∑

t=1

〈et, θt − θ̂i〉, (55)

where γψ is the strong convexity coefficient of the prox-function with respect to the ℓ∞ norm, equal
to 1/(eR2

i ) in our case. This bound follows directly from the analysis of Nesterov [22] and Xiao [30];
the specific form (55) given here corresponds to Lemma 2 of Duchi et al. [8].

Now observe that since ĝt = ∇L(θt) + λiν
t + et, triangle inequality yields the upper bound

‖ĝt‖2∞ ≤ 2
(
‖∇L(θt) + λiν

t‖2∞ + ‖et‖2∞
) (i)

≤ 4G2
i + 4λ2i + 2‖et‖2∞,

where inequality (i) uses the Lipschitz condition in Assumption 1, and the Lipschitz property of the
ℓ1-norm. From this point, further simplifying the error bound (54) requires controlling the random
terms

T∑

t=1

αt−1‖et‖2∞ and

T∑

t=1

〈et, θt − θ̂i〉 (56)

Accordingly, we state an auxiliary lemma that provide tail bounds appropriate for this purpose.

Lemma 7. Under the sub-Gaussian tail condition (Assumption 3):

(a) With step sizes αt = α/
√
t, we have

T∑

t=1

αt−1‖et‖2∞ ≤ 2σ2i α
√
T + σ2i ωα

√
2 log T (57)

with probability at least 1− 2 exp(−ω2/12) for all ω ≤ 9
√
log T .
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(b) We have
∑T

t=1〈et, θ̂i − θt〉 ≤ ωRiσi
√
T with probability at least 1− 2 exp(−ω2/12).

See Appendix B.5 for the proof of this result. We now use it to control the terms in equation (56).
Starting with the first term, we observe from Lemma 7 (a) that for T ≥ 1, we are guaranteed that

T∑

t=1

αt−1‖ĝt‖2∞ ≤
T∑

t=1

αt−1(4G2
i + 4λ2i + 2‖et‖2∞)

≤ 4(G2
i + λ2i )

T∑

t=1

αt−1 + 2σ2i α(2
√
T + ωi

√
log T )

≤ 8(G2
i + λ2i )α

√
T + 22σ2i α

√
T ,

with probability at least 1 − 2 exp(−ω2
i /12). Here the last step uses the inequality 9 log T ≤

√
T

valid for all T ≥ 1, as well as the assumption ωi ≤ 9
√
log T . Thus, we have established an upper

bound on the gradient terms with an effective Lipschitz constant

T∑

t=1

αt−1‖ĝt‖2∞ ≤ 22α
√
T (G2

i + λ2i + σ2i ). (58)

Part (b) of Lemma 7 directly controls the second random quantity.
We now plug in the results of these lemmas into our earlier error bound (55), which yields, with

probability at least 1− 3 exp(−ω2
i /12), the upper bound

fi(θ̄(T ))− fi(θ̂i) ≤
22α

2γψ
√
T
(G2

i + λ2i + σ2i ) +
Aψ

α
√
T

+
ωiσiRi√

T

≤ 10
√
G2
i + σ2i + λ2i

√
Aψ
γψT

+
ωiσiRi√

T
.

Here the second inequality uses the setting α = 5
√
Aψγψ/(G

2
i + λ2i + σ2i ). We also note that under

our assumption that ψ is 1-strongly convex with respect to ‖ · ‖1, we have that γψ = 1/(eR2
i ) at

epoch i. Thus with probability at least 1− 3 exp(−ω2
i /12), we have the error bound

fi(θ̄(T ))− fi(θ̂i) ≤ 30Ri

√
Aψ(G

2
i + σ2i + λ2i )

T
+
ωiσiRi√

T

≤ 30Ri

√
Aψ(G

2
i + σ2i )

T
+ 30Riλi

√
Aψ
T

+
ωiσiRi√

T
, (59)

thus completing the first bound in Proposition 1.

B.3 Proof of Lemma 2

The main idea of this proof is to first convert the error bound (59) from function values into ℓ1 and
ℓ2-norm bounds by exploiting the (approximate) sparsity of θ∗. We will then use these bounds to
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simplify the RSC condition. Since the error bound (59) for the minimizer θ̂i, it also holds for any
other feasible vector. In particular, applying it to θ∗, we obtain the bound

fi(θ̄(Ti))− fi(θ
∗) ≤ c

30Ri
λi

√
Aψ(G

2
i + σ2i )

Ti
+ 30Ri

√
Aψ
Ti

+
ωiσiRi

λi
√
Ti
. (60)

Our next step is to lower bound the left-hand side of this inequality. We have

fi(θ̄(Ti))− fi(θ
∗) = L(θ̄(Ti)) + λi‖θ̄(Ti)‖1 − L(θ∗)− λi‖θ∗‖1

(i)

≥ L(θ∗) + λi‖θ̄(Ti)‖1 − L(θ∗)− λi‖θ∗‖1
= λi

{
‖θ̄(Ti)‖1 − ‖θ∗‖1

}
,

where inequality (i) follows since θ∗ minimizes L. Combining with the bound (60) yields

‖θ̄(Ti)‖1 ≤ ‖θ∗‖1 +
30Ri
λi

√
Aψ(G

2
i + σ2i )

Ti
+ 30Ri

√
Aψ
Ti

+
ωiσiRi

λi
√
Ti
. (61)

At this point we recall the shorthand notations ∆∗(Ti) = θ̄(Ti) − θ∗ and ∆̂(Ti) = θ̄(Ti) − θ̂i. In
order to bring the above bound on ‖θ̄(Ti)‖1 closer to the statement of the lemma, we can appeal
to Lemma 6. Indeed an application of the lemma in conjunction with the inequality (61) results in
the bound

‖∆∗(Ti)Sc‖1 ≤ ‖∆∗(Ti)S‖1 +
30Ri
λi

√
Aψ(G

2
i + σ2i )

Ti
+ 30Ri

√
Aψ
Ti

+
ωiσiRi

λi
√
Ti

+ 2‖θ∗Sc‖1. (62)

Our next step is to convert the above cone bound on ∆∗(Ti) into a similar result for ∆̂(Ti). In
order to do so, we observe that ∆∗(Ti)− ∆̂(Ti) = θ̂i − θ∗, and hence

‖θ̂i − θ∗‖1 = ‖∆∗
S(Ti)− ∆̂S(Ti)‖1 + ‖∆∗

Sc(Ti)− ∆̂Sc(Ti)‖1
≥
{
‖∆∗

S(Ti)‖1 − ‖∆̂S(Ti)‖1
}
−
{
‖∆∗

Sc(Ti)‖1 − ‖∆̂Sc(Ti)‖1
}
,

and hence
‖∆̂Sc(Ti)‖1 − ‖∆̂S(Ti)‖1 ≤ ‖∆∗

Sc(Ti)‖1 − ‖∆∗
S(Ti)‖1 + ‖θ̂i − θ∗‖1.

Consequently, Lemma 1 provides the final piece to complete the proof. Combining inequality (39)
obtained from Lemma 1 with our earlier bound (62) yields

‖∆̂(Ti)Sc‖1 ≤ ‖∆̂(Ti)S‖1+
9sλi
γ

+‖θ∗Sc‖1
(
6 + 8

√
sτ

γ

)
+
30Ri
λi

√
Aψ(G

2
i + σ2i )

Ti
+30Ri

√
Aψ
Ti

+
ωiσiRi

λi
√
Ti
.

Consequently, a further use of the inequality ‖∆̂(Ti)S‖1 ≤ √
s‖∆̂(Ti)‖2 allows us to conclude that

there is a universal constant c such that

‖∆̂‖21 ≤ 8s‖∆̂‖22 + c

(
s2λ2i
γ2

+
R2
i

λ2i Ti

(
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

)
+
R2
iAψ
Ti

+ ‖θ∗Sc‖21
(
1 +

sτ

γ

))
(63)
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with probability at least 1− 3 exp(−ω2
i /12). Substituting the settings (34) and (32) of λi and Ti

respectively into the above bound yields

‖∆̂(Ti)‖21 ≤ 8s‖∆̂(Ti)‖22 + c

(
R2
i

γ

γ
+ sε2(θ∗;S, τ)

)
, (64)

where we recall the notation ε2(θ∗;S, τ) =
‖θ∗
Sc

‖21
s

(
1 + sτ

γ

)
.

In order to complete the proof, we now invoke the RSC assumption applied to the function fi.
Specifically, since θ̂i minimizes fi, the RSC condition implies that

γ

2
‖∆̂(Ti)‖22 ≤ fi(θ̄(Ti))− fi(θ̂i) + τ‖∆̂(Ti)‖21.

Combining the above inequality with the bound (64) yields

γ

2
‖∆̂(Ti)‖22 ≤ fi(θ̄(Ti))− fi(θ̂i) + τ

[
8s‖∆̂(Ti)‖22 + c

(
R2
i

γ

γ
+ sε2(θ∗;S, τ)

)]
.

Rearranging terms and recalling the notation γ = γ − 16sτ completes the proof.

B.4 Proof of Proposition 1: Inequality (36b)

Equipped with Lemma 2, we are now ready to prove the second part of Proposition 1. In particular,
using the inequality (63) in the proof of Lemma 2, we observe that with probability at least
1− 3 exp(−ω2

i /12), we have

‖∆̂‖21 ≤ 8s‖∆̂‖22 + c

(
s2λ2i
γ2

+
R2
i

λ2iTi

(
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

)
+
R2
iAψ
Ti

+ sε2(θ∗;S, τ)

)

≤ 16s

γ
(fi(θ̄(Ti))− fi(θ̂i) + τ‖∆̂‖21) + c

(
s2λ2i
γ2

+
R2
i

λ2iTi

(
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

)
+
R2
iAψ
Ti

+ sε2(θ∗;S, τ)

)
.

Here the second inequality uses the local RSC condition (28), and the fact that θ̂i minimizes fi.
From hereonwards, all our inequalities hold with probability at least 1− 3 exp(−ω2

i /12), so that
we no longer state it explicitly. Rearranging terms and recalling the definition (30) of γ, we obtain
that

γ

γ
‖∆̂‖21 ≤

16s

γ
(fi(θ̄(Ti))− fi(θ̂i)) + c

(
s2λ2i
γ2

+
R2
i

λ2iTi

(
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

)
+
R2
iAψ
Ti

+ sε2(θ∗;S, τ)

)
.

Combining the above bound with our earlier inequality (59) yields γ
γ ‖∆̂‖21 ≤ Φ1 +Φ2, where

Φ1 :=
16sRi

γ
√
Ti

(
4
√
Aψ(G

2
i + σ2i ) + 4λi

√
Aψ + ωiσi

)
, and (65a)

Φ2 := c

(
s2λ2i
γ2

+
R2
i

λ2i Ti

(
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

)
+
R2
iAψ
Ti

+ sε2(θ∗;S, τ)

)
(65b)

By the Cauchy-Schwartz inequality, we have sRiλi
γ

√
Aψ
Ti

≤ 2
s2λ2i
γ2

+ 2
R2
iAψ
Ti

, and hence

Φ1 ≤
16sRi

γ
√
Ti

(
4
√
Aψ(G

2
i + σ2i ) + ωiσi

)
+ 128

(
s2λ2i
γ2

+
R2
iAψ
Ti

+

)
. (66)
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Noting that Φ1 and Φ2 involve multiple terms, some increasing and others decreasing in λi, we
optimize the choice of λi, in particular by setting

λ2i =
Riγ

s
√
Ti

√
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i . (67)

Using this setting and combining the upper bound γ
γ ‖∆̂‖21 ≤ Φ1 + Φ2 with the form (65b) of Φ2

and the upper bound (66) on Φ1, we find that

‖∆̂‖21 ≤ c
γ

γ

[
sRi

γ
√
Ti

(√
Aψ(G

2
i + σ2i ) + ωiσi

)
+
R2
iAψ
Ti

+ sε2(θ∗;S, τ)

]
. (68)

Combining the above inequality with the error bound (39) for θ̂i and triangle inequality leads to

‖∆∗‖21 ≤ 2‖∆̂‖21 + 2‖θ∗ − θ̂i‖21 ≤ 2‖∆̂‖21 +
162s2λ2i
γ2

+ c s ε2(θ∗;S, τ)

≤ 2‖∆̂‖21 +
γ

γ
c

(
s2λ2i
γ2

+ s ε2(θ∗;S, τ)

)
,

where the second inequality follows since γ ≥ γ. Substituting the setting (67) of λi yields an upper
bound identical to our earlier bound (68) with different constants.

Finally, in order to use θ̄(Ti) as our next prox-center yi+1, we would also like to control the error
‖θ̄(Ti)− θ̂i+1‖21. Since λi+1 ≤ λi by assumption, we obtain the same form of error bound (68). We
want to run the epoch till all these error terms drop to R2

i+1 := R2
i /2. Recalling our assumption

that γε2(θ∗;S, τ)/γ ≤ R2
i /4, it suffices to set the epoch length Ti to ensure that

c
sRiγ

γ2
√
Ti

√
Aψ(G

2
i + σ2i ) ≤

R2
i

12
, c

sRiγ

γ2
√
Ti
ωiσi ≤

R2
i

12
, and c

γR2
iAψ
γTi

≤ R2
i

12
.

All the above conditions are met if we choose the epoch length

Ti = C

[
s2γ2

γ4R2
i

(
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

)
+
Aψγ

γ

]
,

for a suitably large universal constant C, which completes the proof of the second part of the
proposition. The stated bound in function values follows from substituting the choice of λi in our
earlier bound (59) and some straightforward algebra.

B.5 Proof of Lemma 7

It remains to prove Lemma 7, a result used during the proof of Proposition 1. We do so by exploiting
some classical martingale tail bounds of the Azuma-Hoeffding type. The particular result given
here is due to Lan et al. [16]:

Lemma 8. Let z1, z2, . . . be a sequence of i.i.d. random variables, let σt > 0, t = 1, 2, . . . be a
sequence of deterministic numbers, and let φt = φt(z

t) be deterministic (measurable) functions of
zt = (z1, z2, . . . , zt). Using Ft to denote the σ-field of zt, we have:
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(a) Suppose E[φt | Ft−1] = 0 with probability one and E[exp(φ2t /σ
2
t ) | Ft−1] ≤ exp(1) with

probability one for all t. Then

P

[ T∑

t=1

φt > δ
( T∑

t=1

σ2t
)1/2] ≤ exp(−δ2/3) for all δ ≥ 0. (69)

(b) Suppose that E[exp(|φt|/σt) | Ft−1] ≤ exp(1) w.p. 1 for t. Letting σT = (σ1, . . . , σT ), we
have the bound

P

[
T∑

t=1

φt > ‖σT ‖1 + δ‖σT ‖2
]
≤ exp(−δ2/12) + exp

(
− 3‖σT ‖2
4‖σT ‖∞

δ

)

≤ exp(−δ2/12) + exp(−3δ/4). (70)

We now use this lemma to prove parts (a) and (b) of Lemma 7.

B.5.1 Proof of part (a)

We start by showing that the conditions of Lemma 8 are satisfied. Indeed, by Assumption 3, we
have

E exp

(
αt−1‖et‖2∞
σ2i α

t−1

)
= E exp

(‖et‖2∞
σ2i

)
≤ exp(1).

Consequently, in order to satisfy the condition of Lemma 8(b), it suffices to set σt = σ2i α
t−1.

Recalling our choice αt = α/
√
t, we find that

‖σT ‖1 = σ2i

T∑

t=1

αt = σ2i α

T∑

t=1

1√
t
≤ 2σ2i α

√
T ,

‖σT ‖2 = σ2i

√√√√
T∑

t=1

(αt)2 = σ2i α

√√√√
T∑

t=1

1

t
≤ σ2i α

√
2 log T and

‖σT ‖∞ = σ2i α.

Plugging the above quantities in the statement of Lemma 8(b) with δ = ωi yields

P

[ T∑

t=1

αt−1‖et‖2∞ > 2σ2i α
√
T + ωiσ

2
i α
√

2 log T
]
≤ exp(−ω2

i /12) + exp


−

3σ2i α
√∑T

t=1 1/t

4σ2i α
ωi




≤ exp(−ω2
i /12) + exp

(
−3

√
log T

4
ωi

)

≤ 2 exp(−ω2
i /12),

where the last inequality uses our assumption ωi ≤ 9
√
log T , thus completing the proof.
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B.5.2 Proof of part (b)

We now turn to part (b) of Lemma 7. By assumption, we have E[et | Ft−1] = 0; moreover, the
random variable θt is measurable with respect to Ft−1 and θ̂i is deterministic. Consequently, the
first condition of Lemma 8(a) is satisfied. For the second condition, we observe that by Hölder’s
inequality and Assumption 3, we have

E exp

(
〈et, θt − θ̂i〉2

4R2
i σ

2
i

)
≤ E exp

(
‖et‖2∞‖θt − θ̂i‖21

4R2
i σ

2
i

)

(a)

≤ E exp

(
4‖et‖2∞R2

i

4R2
i σ

2
i

)
= E exp

(‖et‖2∞
σ2i

)
≤ exp(1).

Here inequality (a) uses the facts that ‖θt − yi‖1 ≤ Ri and ‖θ̂i − yi‖1 ≤ Ri by the definition of
our updates (5), so that the conditions of Lemma 8(a) are satisfied with σt = 2σiRi. Plugging this
setting in the result of the lemma and setting δ = ω/2 completes the proof.

C Proof of Lemma 3

The proof of this lemma is based on pair of auxiliary results, which we begin by stating.

Lemma 9. Suppose at some epoch k, we have the bound ‖yk − θ∗‖1 ≤ Rk. Then for all epochs
j ≥ k, we have

‖yj − θ∗‖1 ≤ 8Rk.

Lemma 10. Under the conditions of Lemma 3, for any epoch i > k, we have

fi(yi+1)− fi(yi) ≤ c
R2
kγ

2

sγ
2−(i−k)/2. (71)

See Sections C.2 and C.3 for the proofs of these two lemmas, respectively.

C.1 Main argument

With these auxiliary results in hand, we now turn to the proof of Lemma 3. By the definition of
fi, we have

L(yi+1)− L(θ∗) = (Lyi+1 − L(yi)) + (L(yi)−L(θ∗))
= (fi(yi+1)− fi(yi)) + λk(‖yi‖1 − ‖yi+1‖1) + (L(yi)− L(θ∗))
(i)

≤ c
R2
kγ

2

sγ
2−(i−k)/2 + λiRi + (L(yi)− L(θ∗)),

where step (i) follows from a combination of Lemma 10, and triangle inequality along with the
feasibility of yi+1 at epoch i since ‖yi‖1 − ‖yi+1‖1 ≤ ‖yi − yi+1‖1 ≤ Ri. By applying the Cauchy-
Schwarz inequality to the second term in the bound above, we obtain

L(yi+1)− L(θ∗) ≤ c
R2
k∗2

−(i−k)/2γ2

sγ
+
γR2

i

2s
+
sλ2i
2γ

+ (L(yi)− L(θ∗))

≤ c
R2
k∗2

−(k−k∗)/2γ

s
+ (L(yk)− L(θ∗)),
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where the last inequality uses the setting (15) of λi and the setting (32) of Ti. Recursing the
argument further yields

L(yj)− L(θ∗) ≤ c

j∑

i=k+1

R2
k2

−(i−k)/2γ2

sγ
+ (L(yk+1)− L(θ∗))

≤ c
R2
kγ

2

(
√
2− 1)sγ

+ (L(yk+1)− L(θ∗)),

where the second inequality upper bounds the sum of the geometric progression. Recalling the
given conditions in the lemma, we obtain the upper bound

L(yk+1)− L(θ∗) ≤ fk(yk+1)− fk(θ
∗) + 2λkRk ≤ c

γ2R2
k

sγ
.

Combining the two previous bounds yields L(yj)− L(θ∗) ≤ c
R2
k
γ2

sγ .

Our last step is to apply the RSC condition to this inequality. Since θ∗ minimizes L(θ), we have
γ

2
‖yj − θ∗‖22 ≤ L(yj)− L(θ∗) + τ‖yj − θ∗‖21 ≤ c

[
R2
kγ

2

sγ
+ τR2

k

]
,

where the second inequality uses Lemma 9. Finally, we recall that γ = γ − 16sτ , which allows

us to further simplify the above upper bound to γ
2‖yj − θ∗‖22 ≤ c

R2
k
γ
s , and observing that γ ≤ γ

completes the proof.

C.2 Proof of Lemma 9

The proof of this lemma is straightforward given the definition of our updates (5). At any epoch
j ≥ k, the prox center yj is feasible at epoch j − 1, so that

‖yj − yj−1‖1 ≤ e‖yj − yj−1‖1 ≤ eRj−1,

where we have used the fact that ‖θ‖1 ≤ e‖θ‖p, by our choice (6) of p. Consequently, by definition
of the updates (5), we have

‖yj − θ∗‖1 ≤ ‖yj − yj−1‖1 + ‖yj−1 − θ∗‖1
≤ eRj−1 + ‖yj−1 − yj−2‖1 + ‖yj−2 − θ∗‖1.

By repeating this argument, we may unwind the error bound until we reach epoch k, thereby
obtaining the bound

‖yj − θ∗‖1 ≤
j∑

i=k+1

eRi + ‖yk − θ∗‖1
(i)

≤
j∑

i=k+1

eRi +Rk,

where inequality (i) follows by the lemma assumption.
Finally, we observe that the last term from epoch k is controlled by assumption in the lemma.

As a result, we can further obtain

‖yj − θ∗‖1 ≤ eRk+1

∞∑

j=0

√
2
−j

+Rk,

Summing the geometric progression and noting that e/(
√
2− 1) ≤ 7 completes the proof.
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C.3 Proof of Lemma 10

Note that at any epoch i, the prox-center yi is always feasible by construction. As a result,
equation (59) guarantees that

fi(yi+1)− fi(yi) ≤ cRi




√
Aψ(G

2
i + σ2i ) + ωiσi
√
Ti

+ λi

√
Aψ
Ti




(i)

≤ cRi




√
Aψ(G

2
i + σ2i ) + ωσi
√
Ti

+
sλ2i
Riγ

+
RiγAψ
sTi


 , (72)

with probability at least 1−3 exp(−ω2
i /12), where step (i) uses the elementary inequality 2ab ≤ a2 + b2.

Recalling our setting (34) of the regularization parameter λi, we find that

sλ2i
Riγ

≤
√
Aψ(G

2
i + σ2i ) + ω2

i σ
2
i

Ti
≤

√
Aψ(G

2
i + σ2i ) + ωiσi
√
Ti

,

Substituting this upper bound in our earlier inequality (72) yields

fi(yi+1)− fi(yi) ≤ cRi




√
Aψ(G

2
i + σ2i ) + ωσi
√
Ti

+
RiγAψ
sTi


 .

Under the conditions of Lemma 3, the first term in the above inequality is at most γ2Rk/(2sγ) for
any i > k. Further recalling the assumption that Ti = O(Aψ), we see that for any i > k

fi(yi+1)− fi(yi) ≤ cRi

(
γ2Rk/(2sγ) +

γ2Ri
sγ

)

= c
γ2

sγ
(R2

12
−(k−1)/22−(i−1)/2 +R2

12
−(i−1))

= c
R2

12
−(k−1)γ2

sγ
(2−(i−k)/2 + 2−(i−k))

≤ c
R2
kγ

2

sγ
2−(i−k)/2,

which completes the proof.

D Proof of Lemma 4

Results of this flavor have been established in prior work (e.g., [25, 17]). We provide a proof here
for completeness, building on the result of Loh and Wainwright [17]. Following their notation, we
define the ℓ0-“ball” of radius k, namely the set B0(k) :=

{
θ | θj 6= 0 for at most k indices}, as well

as the set
K(k) = B0(k) ∩ B2(1).
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We establish our claim by appealing to Lemma 12 of Loh and Wainwright, applying their result
with the settings

Γ =
XTX

n
− Σ and the sparsity parameter k := c0

n

log d
min

{
σ2min(Σ)

η4x
, 1

}
,

where c0 is an appropriate universal constant chosen to ensure that k > 1. Based on this result,
we see that it suffices to establish

∣∣∣∣v
T

(
XTX

n
− Σ

)
v

∣∣∣∣ ≤
σmin(Σ)

54
for all v ∈ K(2k).

Under Assumption 4 on the sub-Gaussianity of the design matrix X, we can establish the
above condition by appealing to Lemma 15 of Loh and Wainwright [17]. Specifically, we apply

their result with t = σmin(Σ)
54 and with s = k as defined above. Then we can mimic the ar-

gument in the proof of Lemma 1 in the paper [17] to conclude that with probability at least
1− 2 exp(−c1nmin(σ2min(Σ)/η

4
x, 1)) we have the bound

∣∣∣∣v
T

(
XTX

n
− Σ

)
v

∣∣∣∣ ≤
σmin(Σ)

2

(
‖v‖22 +

‖v‖21
k

)
for all v ∈ R

d.

Substituting our setting of k and rearranging terms completes the proof.

E Proof of Lemma 5

The base case for the ℓ1-error bound at k = 1 is true by our assumption that ‖θ∗‖1 ≤ R1. As a
result, the convergence analysis of Proposition 1 applies at the first epoch. Assuming that k∗ > 1,
our setting of k∗ ensures that

R1s

γ

√
Aψ(G

2
1 + σ21) + ωσi
√
T0

≤ lc
R2

1

2
= cR2

2.

Since T = O(Aψ) by assumption, the R2
1Aψ/T0 term can also be further upper bounded by cR2

2.
Hence, as long as R2

2 ≥ 2ε2(θ∗;S, τ), we obtain the stated ℓ1 error bound at the second epoch by
applying equation (36b) from Proposition 1. A similar calculation using equation 36a yields

γ

2
‖θ̄(T0)− θ̂2‖22 ≤ f2(θ̄(T0))− f2(θ̂2) ≤ c

R2
2γ

s
.

Finally, we can obtain a similar bound up to constant factors on ‖θ̄(T0)−θ∗‖22 as well by combining
with the ℓ2-error bound of Lemma 1 as before. Thus, we obtain our inductive claim for k = 2.
Assuming the inductive hypothesis for arbitrary i < k∗+1, the reasoning for obtaining the inductive
claim at i+ 1 is exactly identical to the above arguments, completing the proof of the lemma.
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