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ABSTRACT 

 
Ideal binary masks are binary patterns that encode the masking 
characteristics of speech in noise. Recent evidence in speech 
perception suggests that such binary patterns provide sufficient 
information for human speech recognition. Motivated by these 
findings, we propose to use ideal binary masks to improve phonetic 
modeling. We show that by combining the outputs of classifiers 
trained on the traditional MFCC features and this novel speech 
pattern, statistically significant improvements over the baseline 
MFCC based classifier can be achieved for the task of phonetic 
classification. Using the combined classifiers, we achieve an error 
rate of 19.5% on the TIMIT phonetic classification task using 
multilayer perceptrons as the underlying classifier. 
 

Index Terms — Speech recognition, CASA, ideal binary 
mask, phone classification, TIMIT. 
 

1. INTRODUCTION 
 
Acoustic modeling forms a major component of speech recognition 
systems. For a typical speech recognition system continuous 
speech is labeled by an acoustic model to produce a phone 
sequence which can later be decoded using pronunciation and 
language models [1].  Phone classification is an instructive subtask, 
similar to phone sequence labeling, where the phone boundaries 
are assumed to be known before the underlying acoustic model 
performs classification. To deal with continuous speech for which 
phone boundaries are not known, a phonetic classifier must be 
coupled with a system that provides the phone boundaries through 
segmentation.    

Considerable efforts have been put on different aspects of 
phonetic classification, such as features, kind and structure of the 
underlying classifier or the model, training strategies, etc. Gaussian 
mixture modeling (GMM) has been the most popular strategy for 
modeling the underlying classifier. The parameters are typically 
estimated via maximum likelihood (ML) estimation [1]. Several 
discriminative training strategies have also been suggested, 
including large margin training [2, 3] and maximum mutual 
information training [4]. Apart from GMMs, other strategies used 
for classification include support vector machines [5], nearest 
neighbor strategies [6], hidden conditional random fields [7], linear 
regularized least squares [8] and neural networks [9]. In [3], 
GMMs are used in a hierarchical structure to yield state-of-the-art 
results for this task. 

This paper primarily focuses on the aspect of feature selection 
for acoustic modeling. Cepstral features have predominantly been 
used for the task of acoustic modeling. More specifically, Mel 
frequency cepstral features (MFCC), along with their delta and 
acceleration components, have been widely used [2, 7]. In [3, 10] a 
set of 8 types of cepstral features are extracted and the outputs of 
the individual classifiers trained on these features separately are 
aggregated to make the final classification. The use of multiple 
features significantly improves the classification performance. One 
of the main disadvantages of cepstral features is that their 
performance gets severely affected under noisy conditions. This is 
one of the reasons why MFCC based speech recognizers perform 
poorly when compared to humans under noisy conditions. 

The noise robustness of human listeners is attributed to 
auditory scene analysis by Bregman [11]. Computational auditory 
scene analysis (CASA) tries to make use of perceptual cues to 
create noise robust systems [12]. Ideal binary mask (IBM) has been 
suggested as one of the important goals of CASA based systems 
[13]. A recent study in speech perception shows that the pattern of 
an IBM appears to provide sufficient information for human 
speech recognition [14]. In the study, IBMs are used to modulate 
speech shaped noise (SSN). Human subjects listen to IBM-gated 
noise and, despite a dramatic reduction of speech information, are 
able to recognize speech almost perfectly. The study suggests that 
the IBM encodes sufficient phonetic information for humans to 
perform speech recognition. Motivated by these findings, we 
explore the IBM for phonetic classification. 

Previous work showed that IBMs can be used for isolated 
digit recognition in noise [15, 16]. In this paper we study IBMs to 
improve phone classification. Our goal is to use IBMs to augment 
traditional speech features to improve performance of acoustic 
models in clean and noisy conditions. In this initial study, we 
investigate clean conditions to understand how the use of IBMs 
can affect the performance of phonetic classifiers. 

The rest of the paper is organized as follows. Section 2 
provides the system description. Experimental results are shown in 
Section 3. We conclude with a discussion in Section 4. 
 

2. SYSTEM DESCRIPTION 
 
2.1. Ideal binary masks 
 
IBM is a time-frequency (T-F) mask, which is a 2D matrix of 
binary  values that  encodes the  masking information  of speech in  
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Fig. 1. IBMs of phones /aa/, /ae/, /eh/, /h#/ (sil), /iy/, /ow/ and /s/, 
ordered from left to right. In the figure, a white pixel indicates 1 
and a black pixel 0. Note how the IBM captures the high energy 
regions of the phone (none for silence). 
 
 
noise. An entry in the matrix assumes the value 1 if the 
corresponding T-F unit has a signal to noise ratio (SNR) that 
exceeds a threshold, also known as the local SNR criterion (LC). 
Mathematically, an IBM can be defined as  

otherwise
LCftSNRif

ftIBM
0

),(1
),(         (1) 

where SNR(t,f) denotes the SNR within the unit of time t and 
frequency f, measured in decibels. 

As can be observed from Equation (1), we need the clean 
speech signal and the noise signal to create an IBM. But our 
experiments are conducted in clean conditions and hence, we need 
a ‘hypothetical’ noise to create an IBM. We create a speech shaped 
noise (SSN) from our training set for this purpose. SSN is a 
stationary noise with a long-term spectrum matching that of natural 
speech. SSN was also used in [14] to test speech intelligibility of 
IBM-gated noise.  

To create the IBM, the clean speech signal and the noise, 
scaled to the desired SNR level, are first passed though a 64-
channel gammatone filterbank with center frequencies spaced 
according to the ERB (Equivalent Rectangular Bandwidth) scale. 
Each filter response is then windowed into time frames using a 20 
ms rectangular window and a frame shift of 10 ms, to produce a 
cochleagram [12]. The IBM is then created by calculating the local 
SNR within each T-F (Time-Frequency) unit and comparing it with 
the LC. Figure 1 shows IBMs of some of the phones from the 
TIMIT corpus [19]. The IBMs in the figure were created for a 3 dB 
mixture of the phones and SSN with the LC set to 0 dB. 

 
2.2. Features used 
 
We use two segment level features to build our classifiers. The 
features are based on the IBM and the more traditional Mel 
frequency cepstral coefficients (MFCC). 

To create the segment level IBM-based feature, the IBM is 
first created for the speech segment at the desired SNR level. It is 
then divided into 5 parts. The first frame and the last frame remain 
unchanged to form the first and last part, respectively. The 
remaining frames are then split into three parts, roughly in a 2:3:2 
ratio, and averaged. This yields 5 frames with the dimensionality 
of 320 (64x5). Log duration information is added to this average 
feature to create a 321 dimensional input representation for each 
sample. 

To create the segment level MFCC-based feature, 13 MFCC 
features (including the 0th cepstral coefficient) are extracted from a 
speech sample along with their delta and acceleration coefficients. 
A window size of 20 ms and an overlap size of 10 ms were used 
for the cepstral analysis. A pre-emphasis coefficient of 0.97 was 
also used as is commonly done. This yields a 39 dimensional 

feature for each frame (calculated using the HTK toolkit [17]). The 
average MFCC feature is then created in the exact same way as 
with the IBMs. Log duration is also added as an additional feature. 
This creates a 196 (39x5 + 1) dimensional average MFCC feature. 

The average segment level features are similar to the ones 
used in [3], [5], [6], [8] and [10]. It is a common practice to create 
a fixed-size segment-level feature for the purpose of phone 
classification. 
 
2.3. Classification strategy 
 
We use multilayer perceptrons (MLP) as the underlying classifier. 
Separate MLPs are trained using each of the two features described 
above. Our assumption is that since the two features are very 
different from each other, the kind of errors made by the two 
classifiers will also be very different. To get the best of both, we 
need to combine the outputs of the two classifiers in an appropriate 
way. 

We borrow ideas from [18] to combine the two classifier 
outputs. A softmax function is applied to the MLP outputs so that 
they sum up to 1. This allows the MLP outputs to be interpreted as 
probability measures. If there are M classes, we denote the outputs 
of each MLP as: 

MiMLPCxP ki ,...,1),|(          (2) 

M

i
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1
1)|(,               (3) 

Here x denotes the sample under consideration; Ci denotes the ith 
class; and MLPk the kth MLP.  

Given a classifier, we analyze the performance of the 
classifier and encode the prior knowledge about the classifier by 
building a confusion matrix. This can be done either using the 
training set or a small held-out development set. An entry nij in the 
confusion matrix denotes the number of times the classifier 
predicted a sample belonging to Ci as Cj. Let MLPk(x) denote the 
final classification decision made by MLPk, for a random input 
sample x. Using the confusion matrix, define: 

M
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which is the probability that a sample classified as belonging to Cj 
by the MLP has the correct class Ci. Using these probability 
estimates, we now define the belief of each classifier for each class 
as: 

M

j
kjki

M

j
ki

ik

MLPCxPjxMLPCxP

jxMLPCxP

Cxbel

1

1

)|())(|(

))(,(

)(

 

            (5) 

The first term can be obtained from the probability measures 
estimated from the confusion matrix. The second term is directly 
obtained from the MLP outputs. Finally, the belief for each class 
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can be estimated by adding up the beliefs of individual classifiers 
directly, or by adding up their log beliefs. Instead of weighing each 
classifier equally during this summation, we can also weigh the 
beliefs of each classifier based on our confidence on the individual 
classifiers. Therefore, the final belief can be defined as: 

k ikki CxbelwCxbel )()(          (6) 

 or 

k ikki CxbelwCxbel ))(log()(         (7) 

wk can easily be determined using a held out development set since 
we have only 2 classifiers to combine. The classification decision 
is made by looking at the beliefs of each class and choosing the 
class with the greatest belief. 

Note that the proposed combination technique is a special 
case of Bayesian evidence combination when the weighted belief 
assignments of individual classifiers are added to estimate the final 
belief in a class Ci. wk can be thought of as the prior probability of 
the classifier k in this setting. On the other hand, when the 
weighted log beliefs are combined, it’s a special case of Dempster-
Shafer (DS) theory of evidence combination if we assume 

kw
ik Cxbel ))(( to be the belief of classifier k on Ci with every 

other subset of the set of hypothesis (phone classes in our case, 
also called the frame of discernment, Ω, in DS theory) being 
assigned a belief value 0 [18]. Log being a monotonic function, the 
DS theory of combining these beliefs would yield the same 
classification results as ours although the final assigned beliefs of 
each class will be different because of an additional normalization 
constant. Note that the normalization does not affect the 
classification results. 

  
3. RESULTS 

 
3.1. Experimental setup 
 
We perform phone classification experiments using the well 
benchmarked TIMIT database [19]. As in standard practices, 61 
phonetic labels were mapped to 48 phone classes. Glottal stops 
(/q/) were ignored. MLPs were then trained to perform a 48-class 
classification. The training set, the development set and the test set 
consisted of 3696, 400 and 192 utterances, respectively (see also 
[2, 3, 7, 8, 10]). This corresponds to 140225 tokens in the training 
set, 15057 tokens in the development set and 7215 tokens in the 
test set. Results were evaluated by mapping these 48 phone classes 
to 39 clusters as done in [20].  

To generate the IBMs for creating the IBM-based feature, the 
SNR was set to 3 dB and the LC to 0 dB. This SNR was found to 
produce more discriminative IBMs among the three tested SNR 
conditions (0 dB, 3 dB and 6 dB). While generating the IBMs and 
the MFCC features, 30 ms of speech before and after the segment 
boundaries was also included [8]. 

The development set was used to tune all the hyper-
parameters of the system, i.e., the SNR at which the IBMs were 
generated, the number of hidden units in the MLPs, and the 
optimal weights to combine the two classifier outputs (wk in 
Equations (6) and (7)). The development set was also used for 
early stopping while training the MLPs. The features were 
standardized (zero mean, unit variance) using the means and 
variances calculated from the training set. All MLPs were trained 

using the ICSI Quicknet software package [21]. The final chosen 
classifier had 1750 hidden units for the MFCC-based classifier and 
2500 hidden units for the IBM-based classifier. The optimal 
weights are shown in Table 2, along with the classification results. 
 
3.2. Experimental results 
 
Table 1 summarizes the baseline results, measured in terms of error 
rates. The MFCC based classifier performs significantly better than 
the IBM based classifier. We note that the performance obtained 
on the core test set by using just the MFCC based features (an error 
rate of 20.8%) is comparable to the results obtained for this task 
using other single-classifier strategies like hidden conditional 
random fields (20.8% and 21.3% in [7]), large margin training of 
Gaussian mixture models (21.1% in [2]) and linear regularized 
least squares method (20.9% in [8]). Although the classifier trained 
on the IBM based features does not perform that well, an error rate 
of 28.9% by merely using binary features, we believe, is an 
interesting result. As shown in Table 1, the error rates obtained on 
the development set are similar.  

Table 1. Error rates of the baseline classifiers on the TIMIT 
development set and the core test set. 

Feature used Development Set Core Test Set 
IBM-based 27.2% 28.9% 
MFCC-based 19.4% 20.8% 

Table 2. Error rates when the baseline classifiers are combined by 
adding their beliefs or log-beliefs. The 2nd and 3rd columns specify 
the weights assigned to each of the baseline classifiers. 

What to 
combine wMFCC wIBM 

Classification Results 
Development 

Set 
Core 

Test Set 
Beliefs 0.706 0.294 18.5% 19.8% 
log-beliefs 0.709 0.291 18.3% 19.5% 

To see whether the output produced by the IBM based feature 
can potentially contribute to classification, we calculated the error 
rate on the development set when at least one of the two classifiers 
correctly predicted the output. We observed that, at least one of 
two classifiers predicted correctly with an accuracy of 86.5%, 
which corresponds to an error rate of 13.5%. This is clearly a 
significant improvement over the baseline results on the 
development set, although not achievable unless we know the 
ground truth labels. More importantly, this observation confirms 
our assumption that the errors made by the two classifiers are 
significantly different and hence combining them is a sensible 
strategy. 

Table 2 summarizes the results when the outputs of the two 
classifiers were combined as described in the previous section. If 
we directly use the beliefs of the two classifiers (Equation (6)), we 
obtain an absolute improvement of around 1% over the baseline on 
the core test set. On using the log beliefs (Equation (7)), an 
absolute improvement of 1.3% is obtained over the baseline 
results. This improvement is statistically significant at 5%. Upon 
running the test to see if at least one of the classifiers was able to 
correctly classify an input from the core test set, we obtained an 
error rate of 14.5%. This again shows that the errors made by the 
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two classifiers are different and useful for improving the overall 
accuracy for the task. 

In [22], MFCC features were combined with features 
extracted using a convolutional deep belief network for phone 
classification. It is worth noting that the proposed IBM based 
feature and the combination strategy perform better than the results 
reported in [22]. The state-of-the-art result for the task of phone 
classification is an error rate of 16.7% obtained using a committee 
based classifier with 8 different features and a hierarchical 
classification model [3]. We believe the use of the IBM-based 
feature in such a framework could further reduce the error rates for 
this task. 
 

4. DISCUSSIONS 
 
We have demonstrated how features derived from ideal binary 
masks can be used to improve phone classification. The feature is 
very different from the traditionally used speech features. We 
obtained an error rate of 19.5% on the core test set which compares 
favorably to most results reported in recent phone classification 
literature.  

This study shows that IBMs can be effectively used to 
improve phone classification in clean conditions. We believe that 
the true strength of the proposed approach lies in its potential 
applications in noisy conditions. IBM estimation is an active area 
and several strategies exist to estimate IBM in noisy conditions 
making it a more robust feature as compared to MFCC [12]. 
Therefore, when noise corrupts a speech signal, one could adjust 
the classifier weights based on the SNR of the mixture, to give 
greater weight to the IBM based classifier as noise corrupts the 
MFCC based feature. This will be examined in our future research. 
We would also like to study how the knowledge obtained through 
phone classification experiments can be extended to perform phone 
recognition when segment boundaries are not known in advance. 
This will be important to build an acoustic model with direct 
applications to speech recognition. 

Noise robustness is an important challenge for ASR research. 
We believe that novel features like the IBM may offer promising 
new avenues for building noise robust automatic speech 
recognition systems. 
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