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Abstract— Treating the interference as noise in then−user
interference channel, the paper describes a novel approachto the
rates region, composed by the time-sharing convex hull of2n − 1

corner points achieved through On/Off binary power control.
The resulting rates region is denotedcrystallized rates region.
By treating the interference as noise, then−user rates region
frontiers has been found in the literature to be the convex hull
of n hyper-surfaces. The rates region bounded by these hyper-
surfaces is not necessarily convex, and thereby a convex hull
operation is imposed through the strategy of time-sharing.This
paper simplifies this rates region in then−dimensional space by
having only an On/Off binary power control. This consequently
leads to 2

n
− 1 corner points situated within the rates region.

A time-sharing convex hull is imposed onto those corner points,
forming the crystallized rates region. The paper focuses ongame
theoretic concepts to achieve that crystallized convex hull via
correlated equilibrium. In game theory, the correlated equilibrium
set is convex, and it consists of the time-sharing mixed strategies
of the Nash equilibriums. In addition, the paper considers a
mechanism design approach to carefully design a utility function,
particularly the Vickrey-Clarke-Groves auction utility, where the
solution point is situated on the correlated equilibrium set. Finally,
the paper proposes a self learning algorithm, namely the regret-
matching algorithm, that converges to the solution point onthe
correlated equilibrium set in a distributed fashion.

I. I NTRODUCTION

Wireless systems are becoming increasingly interference
limited rather than noise limited, attributed to the fact that the
cells are decreasing in size and the number of users within
a cell is increasing. Mitigating the impact of interference
between transmit-receive pairs is of great importance in order
to achieve higher data rates. Describing the complete capacity
region of the interference channel remains an open problem
in information theory [1]–[5]. For very strong interference,
successive cancellation schemes have to be applied, while
in the weak interference regime, treating the interferenceas
additive noise is optimal to within one bit [6]–[9]. Treating
the interference as noise, then−user achievable rates region
has been found in [10] to be the convex hull ofn hyper-
surfaces. The rates region bounded by these hyper-surfacesis
not necessarily convex, and hence a convex hull operation is
imposed through the strategy of time-sharing.

This paper adopts a novel approach into simplifying this
rates region in then−dimensional space by having only On/Off
binary power control. Limiting each of then transmitters to a
transmit power of either0 or Pmax, this consequently leads to
2n−1 corner points within the rates region. And by forming a
convex hull through time-sharing between those corner points,
it thereby leads to what we denote a crystallized rates region.

Utility maximization using game-theoretic techniques has
recently received significant attention [11]–[15]. Most ofthe
existing game theoretic works are based on the concept of Nash

equilibrium [16]. However, the Nash equilibrium investigates
the individual payoff and might not be system efficient, i.e.
the performance of the game outcome could still be improved.
In 2005, Nobel Prize was awarded to Robert J. Aumann
for his contribution of proposing the concept of correlated
equilibrium [17]. Unlike Nash equilibrium in which each user
only considers its own strategy, correlated equilibrium achieves
better performance by allowing each user to consider the joint
distribution of the users’ actions. In other words, each user
needs to consider the others’ behaviors to see if there are mu-
tual benefits to explore [18]–[20]. Likewise, mechanism design
(including auction theory [21]) is a subfield of game theory that
studies how to design the game rule in order to achieve good
overall system performance [22], [23]. Mechanism design has
drawn recently a great attention in the research community,
especially after another Nobel Prize in 2007.

The paper presents three contributions with the following
structure:

1) Section II introduces the concept of crystallized rates
region with On/Off power control.

2) Section III applies the game theoretic concept of corre-
lated equilibrium (CE) to the rates region problem. The
CE exhibits the property of forming a convex set around
the 2n − 1 corner points, hence fitting suitably in the
crystallized rates region formulation.

3) Using mechanism design, Section IV presents an exam-
ple in applying these two concepts for the2−user chan-
nel and formulates the Vickrey-Clarke-Groves auction
utility. To find the solution point distributively, the regret
matching learning algorithm is employed by virtue of its
property of converging to the correlated equilibrium set.

Section V demonstrates the ideas through simulation, and
Section VI draws the conclusions.

II. CRYSTALLIZED RATES REGION

A. System Model for2−user Interference Channel

A 2−user interference channel is illustrated in Fig. 1. User
i transmits its signalXi to the receiverYi. The receiver front
end has additive thermal noiseni of varianceσ2

n. There is
no cooperation at the transmit, nor at the receive side. The
channel is flat fading. For brevitya, b, c, and d represent
the channel power gainnormalized by the noise variance.
Explicitly, a = |g1,1|

2/σ2
n, b = |g2,1|

2/σ2
n, c = |g2,2|

2/σ2
n,

and d = |g1,2|
2/σ2

n, wheregi,j is the channel gain from the
ith transmitter to thejth receiver. Useri transmits with power
Pi, and it has a maximum power constraint ofPmax.

In an effort to keep the complexity of the receivers fairly
simple, the interference is treated as noise. Such case is encoun-
tered in sensor networks and in cellular communication where
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Fig. 1: 2−user interference channel

it is desired to have low power-consuming and correspondingly
low complexity receivers. Therefore, with the power vector
P = [P1, P2]

T , treating the interference as noise the achievable
rates for the2−user interference channel are:

R1(P) = log2

(

1 + aP1
1 + bP2

)

;

R2(P) = log2

(

1 + cP2
1 + dP1

)

.
(1)

B. The Achievable Rates Region Treating Interference as Noise

In [10] the achievable rates region for the generaln−user
channel, treating the interference as noise, is found to be the
convex hull of the union ofn hyper-surfaces. Each hyper-
surface is characterized by holding one of the transmitter
constant at a full power while the other transmitters sweep all
their power range, hence forming a hyper-surface as a result.
There aren transmitters, resulting inn hyper-surfaces, onto
which the convex hull operation is performed.

The convexity or concavity behavior of these hyper-surface
frontiers is complex. A rates region set is convex whenever it
entirely encloses a straight line formed by connecting any two
points within the rates region. As a result when the ratesregion
is convex, its outerbound hyper-surfacefrontiers are concave,
and vice versa.

For the2−user channel, see Fig. 2, the hyper-surfaces are
the two frontiers:ΦAB = Φ(:, Pmax), characterized by holding
P2 = Pmax andP1 sweeps all its power range from0 to Pmax,
andΦBC = Φ(Pmax, :) characterized by holdingP1 = Pmax

and P2 sweeps all its power range from0 to Pmax. These
frontiers are referred to aspotential linesgiven that each is
characterized by holding one the transmit power arguments at
a constant value, in this casePmax, while the other power
argument spans the whole power range.

These potential lines are concave in noise-limited regimes
(thus enclosing a convex rates region) as in Fig. 2-a, and they
shift towards convexity as the interference increases, as in
Fig. 2-d. In cases with moderate interference levels, they can
exhibit non-stationary inflection point, as at point D in Fig.2-b.

C. Crystallized Rates Region

The crystallized rates region approach approximates the
achievable rates region formed by the potential linesΦAB and
ΦBC into the convex time-sharing hull of the straight lines
connecting points A, B, and C. DenotingΦ(P1, P2) the point
in the rates region achieved when user1 transmits atP1 and
user2 transmits atP2 in Eq. (1): point A isΦ(0, Pmax) where
only user 2 transmits at full power and user 1 is silent, pointB
is Φ(Pmax, Pmax) where both users transmit simultaneously at
full power, and point C isΦ(Pmax, 0) where user 1 transmits at
full power and user 2 is silent. Hence, we refer by binary power

control such mechanism of operation in producing points A, B,
and C. We denote such points that are formed by binary power
control as thecorner points of the rates region. In the2−user
interference channel, there exist3 corner points, similarly in
then−user case there exist2n − 1 corner points.

Therefore, this paper simplifies the analysis of the rates
region in then−dimensional space to just focus on finding
the convex time-sharing hull onto the2n − 1 corner points,
forming the crystallized rates region. In the2−user dimension,
these are straight time-sharing lines connecting two points; in
the3−user dimension, these are a set of polygon surfaces each
connecting three points, see Fig. 3.

D. System Time-sharing Coefficients and Rates Equations

Instead of a power control problem in findingPi, the
problem becomes finding the appropriate time-sharing coef-
ficients of the2n − 1 corner points. For the2−user case, let
θ= [θ1, θ2, θ3]

T ,
∑

i θi = 1, denote thesystemtime-sharing
coefficients vector of the respective corner pointsΦ(Pmax, 0)
(user 1 transmitting only with a time-sharing coefficientθ1),
Φ(0, Pmax) (user 2 transmitting only with a time-sharing
coefficient θ2), and Φ(Pmax, Pmax) (both users transmitting
with a time-sharing coefficientθ3). The reasonθ is labeled
a systemtime-sharing coefficients vector is to emphasize the
combinatorial element in constructing the corner points, where
the cardinality of|θ| = 2n − 1.

Then for 2−user case, in contrast with Eq. (1), the new
crystallized rates equations forR1 andR2 are:

R1(θ) = θ1 log2(1 + aPmax) + θ3 log2

(

1 + aPmax
1 + bPmax

)

R2(θ) = θ2 log2(1 + cPmax) + θ3 log2

(

1 + cPmax
1 + dPmax

)

(2)

Any solution point on the crystallized frontier would lie
somewhere on the time-sharing line connecting two points for
the2−user case; and similarly for the3−user case, the solution
point lies somewhere on a time-sharing plane connecting three
points, then by deduction we obtain the following corollary:

Corollary 1: The system time-sharing vectorθ, for any
solution point on then−user crystallized rates region, has at
maximumn nonzero coefficients out of its2n − 1 elements.

E. Evaluation of Crystallization

Examining the crystallized rates region in more details for
the 2−user interference channel, we evaluate the area of the
rates region bounded by the potential linesΦAB and ΦBC

achieved through power control, and the area of the rates region
formed by time-sharing points A, B, and C. In effect, we are
evaluating how much gain or loss results from completely
replacing the traditional power control scheme (see Eq. (1))
with the time-sharing scheme between the corner points (see
Eq. (2)). For this purpose we consider the symmetric channel,
wherea = 1, and we increase the interferenceb to vary the
signal to interference ratioSIR = a/b from 20dB to −20dB.
The value of the area bounded by the power control potential
lines is plotted in Fig.4 together with the value of the area
bounded by the time-sharing scheme through the point B (
formed by the time-sharing lines A-B and B-C). In addition,
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Fig. 2:2−user rates region: (a) noise-limited, concave frontiers (ΦAB,ΦBC); (b) frontier (ΦAB) with inflection-point; (c) convex
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Fig. 3: 3−user crystallized rates region: (a) time-sharing crystallized hull,(b) crystallized hull overlaid on top of the ratesregion
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Fig. 4: Area of the rates region achieved through power control
or through time-sharing versus interference

for reference, the area confined by the time-sharing line A-C
is plotted, which does not depend on the SIR.

For weak interference, or equivalently noise-limited regime,
point B is used in constructing the crystallized region. As the
interference increases beyond a certain threshold level, time-
sharing through point B becomes suboptimal, and time-sharing
A-C becomes optimal. The exact switching point from power
control to time-sharing has been found in [10]. In Fig. 4,
this happens at the intersection of the blue line (with circle
markers) and the A-C dotted line. As indicated in Fig. 4, there
is no significant loss in the rates region area if time-sharing is
used universally instead of traditional power control, in fact in
some cases time-sharing offers considerable gain. Specifically,
whenever the potential lines exhibit concavity, time-sharing
loses to power control; whenever the potential lines exhibit
convexity, time-sharing gains over power control. Different
values ofa also lead to the same conclusion.

In Fig. 5 the percentage of the rates region gain (or loss)
in using the time-sharing scheme (through point B) over
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Fig. 5: Gain (or loss) percentage from using time-sharing
through point B over power control

the power control scheme is plotted for the same symmetric
channel examined in Fig. 4. The loss does not exceed1%,
and the time-sharing strategy is therefore quite attractive. For
illustration purposes, note that the x-axis in Fig. 5 was chosen
to span the interference range of−20dB to 0dB; whereas in
Fig. 4 the x-axis interference range was from−20dB to 20dB.
If we were to plot the x-axis in Fig. 5 up to20dB instead of the
0dB, the percentage gain would have reached on the y-axis up
to 800%. Note that for high interference time-sharing through
point B is suboptimal and time-sharing A-C is optimal, so the
gain over power control is even larger.

III. C ORRELATED EQUILIBRIUM FOR CRYSTALLIZED

INTERFERENCECHANNEL

The crystallized rates region offers a good alternative to
form the rates region of then−user interference channel with
marginal loss, and sometimes significant gain (especially for
interference-limited regimes). Therefore the problem revolves
around finding the convex hull over the set of polygons



connecting the2n − 1 corner points. One technique explored
to achieve the convex hull is through the concept of correlated
equilibrium in game theory.

A. Correlated Equilibrium

Every useri has a transmit strategyαi of either0 or Pmax.
Ui is the utility of useri. Nash equilibrium is a well-known
concept to analyze the outcome of a game which states that
in the equilibrium every user will select a utility-maximizing
strategy given the strategies of every other user.

Definition 1: Nash equilibrium achieving strategyα∗
i of user

i is defined as:

Ui(α
∗
i ,α−i) ≥ Ui(αi,α−i), ∀i, ∀αi ∈ Ωi (3)

whereαi is any possible strategy of useri, α−i is the strategy
vector of all other users except useri, andΩi is the strategy
space{0, Pmax}. In other words, given the other users’ actions,
no user can increase its utility alone by changing its own action.

Next the concept of the correlated equilibrium is studied.
It is more general than the Nash equilibrium and it was
first proposed in [17]. The idea is that a strategy profile
is chosen according to the joint distribution instead of the
marginal distribution of users strategies. When converging to
the recommended strategy, it is to the users’ best interests
to conform to this strategy. The distribution is called the
correlated equilibrium, which is defined as:

Definition 2: A probability distribution p is a correlated
equilibrium of a game, if and only if, for alli, αi ∈ Ωi, and
α−i ∈ Ω−i,

∑

α
−i∈Ω

−i

p(α∗
i ,α−i)[Ui(α

∗
i ,α−i)−Ui(αi,α−i)] ≥ 0, ∀αi ∈ Ωi.

(4)
Ω−i denotes the strategy space of all the users other than useri.
As every userj, j 6= i, has a possible0 orPmax strategy choice,
then the cardinality ofΩ−i is |Ω−i| = 2(n−1). Therefore
the summation in Eq. (4) have2n−1 summation terms. The
summation overα−i generates the marginal expectation. The
inequality (4) means that when the recommendation to useri
is to choose actionα∗

i , then choosing actionαi instead ofα∗
i

cannot result in a higher expected payoff to useri. It is worth
to point out that the probability distributionp is a joint point
mass function (pmf) of the different combinations of then
users strategies. Therefore,p is the joint pmf of the resulting2n

systemstrategy points. Discounting the trivial system strategy
of all the users transmitting at0, there exist2n − 1 system
strategy points that we wish to find their pmfs.

B. CE in the Context of the Crystallized Rates Region

Revisiting Subsection II-D, the2n − 1 point mass functions
that we want to find are the system time-sharing coefficients
θk, k = 1, . . . , 2n − 1. We can index those2n − 1 pmfs
to the correspondingθk in any bijective one-to-one mapping.
Index k can denote the base-2 representation of the binary
users’ strategies (starting with user1’s binary action as the
least significant bit). For example, letα(1)

i denotes that user
i transmits withαi = Pmax, andα

(0)
i denotes that useri is

silent withαi = 0. In Subsection II-D,θ1 was mapped to user
1 transmitting, equivalentlyθ1 = p(α

(1)
1 , α

(0)
2 ) = pΦ(Pmax,0);

where we defined explicitlypΦ(Pmax,0) as the point mass
function of the pointΦ(Pmax, 0). And similarlyθ3 was mapped
to both users transmitting,θ3 = p(α

(1)
1 , α

(1)
2 ) = pΦ(Pmax,Pmax).

Morever, by definition,
∑

α p(α) =
∑(2n−1)

k=1 θk = 1, and as
discussed in Corollary I, the solution point possesses at most
n nonzero pmfs in the joint distributionp.

The correlated equilibriums set is nonempty, closed and con-
vex in every finite game [17]. In fact, every Nash equilibrium
and mixed (i.e. time-sharing) strategy of Nash equilibriums are
within the correlated equilibrium set, and the Nash equilibrium
correspond to the special case wherep(α) is a product of each
individual user’s probability for different actions, i.e., the play
of the different users is independent [17], [23].

IV. M ECHANISM DESIGN AND LEARNING ALGORITHM

There are two major challenges to implement correlated
equilibrium for rate optimization over the interference channel.
First, to ensure the system converges to the desired point (such
as time-sharing between A-C instead of going through point
B in Fig. 2 (d)). As an example, we considered an auction
utility function from mechanism design. Second, to achieve
the equilibrium, a distributive solution is desirable, where we
propose the self-learning regret matching algorithm.

A. Mechanism Designed Utility

One important mechanism design is the Vickrey-Clarke-
Groves (VCG) auction [21] which imposes cost to resolve the
conflicts between users. Using the basic idea of VCG, where
we want to maximizeUi, ∀i, the user utilityUi is designed to
be the rateRi minus a payment cost functionζi as

Ui , Ri − ζi. (5)

The payment cost of useri is expressed as the performance
loss of all other users due to the inclusion of useri, explicitly:

ζi(α) =
∑

j 6=i

Rj (α−i)−
∑

j 6=i

Rj (αi) . (6)

Hence if αi is 0 for user i, it is equivalent to useri being
absent, consequently the costζi = 0 wheneverαi = 0. For
the 2−user case, focusing onζ1 whenα1 = Pmax, hence: a)
if α2 = 0, thenR2 = 0 andζ1 = 0; b) if α2 = Pmax, then:

ζ1(α1 = Pmax, α2 = Pmax)

= R2(α1 = 0, α2 = Pmax)−R2(α1 = Pmax, α2 = Pmax)

= log2

(

1 + cPmax)− log2(1 +
cPmax

1 + dPmax

)

= log2

(

1 +
cdP 2

max
1 + cPmax + dPmax

)

.

ζ2 follows by symmetry. As a result, the VCG utilities for the
2−user channel are summarized in Table I, where

U ′
1 = log2(1 +

aPmax
1 + bPmax

)− log2

(

1 +
cdP 2

max
1 + cPmax + dPmax

)

U ′
2 = log2(1 +

cPmax
1 + dPmax

)− log2

(

1 +
abP 2

max
1 + aPmax + bPmax

)

Notice that each user pays the cost because of its involve-
ment. This cost function can be calculated and exchanged
before transmission with little signalling overhead.



TABLE I: 2−user VCG{U1, U2} utility table

α2 = 0 α2 = Pmax

α1 = 0 {0, 0} {0, log2(1 + cPmax)}
α1 = Pmax {log2(1 + aPmax), 0} {U ′

1, U
′
2}

B. The Regret-Matching Algorithm

Finally, we exhibit the regret-matching algorithm [23] to
learn in a distributive fashion how to achieve the correlated
equilibrium set in solving the VCG auction. The algorithm
is named regret-matching (no-regret) algorithm, because the
stationary solution of the learning algorithm exhibits no regret
and the probability to take an action is proportional to the
“regrets” for not having played the other actions. Specifically,
for user i there are two distinct binary actionsα(0)

i andα
(1)
i

at every timet = T (whereα(0)
i = 0, andα(1)

i = Pmax). The
regretR of useri at timeT for playing actionα(1)

i instead of
the other actionα(0)

i is

R
T
i (α

(1)
i , α

(0)
i ) := max{DT

i (α
(1)
i , α

(0)
i ), 0}, (7)

where

DT
i (α

(1)
i , α

(0)
i ) =

1

T

∑

t≤T

[U t
i (α

(0)
i ,α−i)− U t

i (α
(1)
i ,α−i)].

(8)
Here U t

i (α
(·)
i ,α−i) is the utility at timet and α−i is other

users’ actions.DT
i (α

(1)
i , α

(0)
i ) has the interpretation of average

payoff that useri would have obtained if it had played action
α
(0)
i every time in the past instead of choosingα(1)

i . The
expressionRT

i (α
(1)
i , α

(0)
i ) can be viewed as a measure of the

average regret. Similarly,RT
i (α

(0)
i , α

(1)
i ) represents the average

regret if the alternative action has been taken.
Recalling the discussion in Subsection III-B about the map-

ping notation we adopted between the point mass functions
p(α

(·)
1 , α

(·)
2 ) and the system time-sharing coefficients (θs), then

we want to find the point mass functionp(α(1)
1 , α

(0)
2 ) ≡ θ1,

p(α
(0)
1 , α

(1)
2 ) ≡ θ2, and p(α

(1)
1 , α

(1)
2 ) ≡ θ3. As discussed in

Subsection II-D there exist2n = 4 pmfs for the2−user case.
For the trivial case of the origin pointΦ(0, 0), p(α(0)

1 , α
(0)
2 ) =

0. We are left to obtainp(α(1)
1 , α

(0)
2 ), p(α

(0)
1 , α

(1)
2 ), and

p(α
(1)
1 , α

(1)
2 ). Specifically‡ to the2−user case, this simplifies

further to finding onlytwo variables. Denotingp1 = θ1, and
p2 = θ2, thenθ3 can be deduced asθ3 = 1− p1 − p2.

The details of the regret-matching algorithm is shown in
Table II. The probabilitypi is a linear function of the regret, see
Eq. (9). The algorithm has a complexity ofO(|Ωi|) = O(2).

By using the theorem in [23], if every user plays according
to the learning algorithm in Table II, the adaptive learning
algorithm has the property that the probability distribution
found converges on the set of correlated equilibrium. It has
been shown that the set of correlated equilibrium is nonempty,
closed and convex [17]. Therefore, by using the algorithm in

‡Note: Solving forn variables instead of2n − 1 does not apply ton ≥ 3;
the2−user case is a special case, as

∑
2
n−1=3

k=1
θk = 1 was used to simplify

the unknowns to2. For n ≥ 3, see Fig.3, it is not enough to find the time-
sharing strategy ofindividual users, asorderingneeds to come into the picture
in arriving to the desiredsystemtime-sharing coefficients.

TABLE II: Regret-matching learning algorithm
Initialize arbitrarily probability for useri, pi.
For t=2,3,4,...

1. Letαt−1
i be the action last chosen by useri, andα̂t−1

i

as the other action.
2. FindDt−1

i (αt−1
i , α̂t−1

i ) as in Eq. (8).
3. Find average regretRt−1

i (αt−1
i , α̂t−1

i ) as in Eq. (7).
4. Then the probability distribution of the actions for

the next period,pti is defined as:

pti(α̂
t−1
i ) = 1

µ
R

t−1
i (αt−1

i , α̂t−1
i ),

pti(α
t−1
i ) = 1− pti(α̂

t−1
i ),

(9)

whereµ is a certain constant that is sufficiently large.

Table II, we can guarantee that the algorithm converges to the
set of CE asT → ∞.

V. SIMULATION RESULTS

To demonstrate the proposed scheme, we setup a2−user
interference channel wherePmax = 1. In Fig. 6, we show
the crystallized rates region for the noise-limited regimewith
a = 2, b = 0.2, c = 1, andd = 0.1. The learning algorithm
converges close to the Nash equilibrium, which means that
both users transmit with maximum powerPmax all the time.
This corresponds to the case in Fig. 2 (a). In Fig. 7, we show
the Type II time-sharing case witha = 20, b = 2, c = 1, and
d = 1. The algorithm converges toθ2 = 0.92 and θ3 = 0.08,
which means the probability that user 2 transmits alone is0.92,
and the probability that both users transmit with full poweris
0.08. This corresponds to the case in Fig. 2 (c). Finally, in Fig.
8, we show the interference-limited regime withc = 1, d = 10
as well as seven different instances ofa andb. First, the Nash
equilibriums exhibit much poorer performance than the TDMA
time-sharing lines. The proposed learning algorithm converges
to a point on the TDMA time-sharing lines, this corresponds to
the case in Fig. 2 (d). Moreover, the learning algorithm favors
the weaker user.

In Fig. 9, we show the interference-limited case witha =
1, b = 10, c = 1, andd = 10. Due to the symmetry, the learning
algorithm achieves probabilities of0.5, which means the two
users conduct equal time-sharing over the channel, where each
transmits solely at full power while the other is silent; andsuch
two transmission states happen equally 50% of the time each.
This corresponds to the A-C time-sharing case in Fig. 2 (d).

VI. CONCLUSION

Treating the interference as noise, the paper proposes a
novel approach to the rates region in then−user interference
channel, composed by the time-sharing convex hull of2n − 1
corner points achieved through On/Off binary power control.
The resulting rates region is denoted crystallized rates region.
It then applies the concept of correlated equilibrium from
game theory to form the convex hull of the crystallized
region. An example in applying these concepts for the2−user
case, the paper considered a mechanism design approach to
design the Vickrey-Clarke-Groves auction utility function. The
regret-matching algorithm is used to converge to the solution
point on the correlated equilibrium set, to which subsequently
simulation was presented.
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Fig. 6: Noise-limited:2−user case
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Fig. 7: Type II time-sharing (see Fig. 2 (c))
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