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Abstract—A major source of signal degradation in real envi-
ronments is room reverberation. Monaural speech segregation in
reverberant environments is a particularly challenging problem.
Although inverse filtering has been proposed to partially restore
the harmonicity of reverberant speech before segregation, this
approach is sensitive to specific source/receiver and room config-
urations. This paper proposes a supervised learning approach to
monaural segregation of reverberant voiced speech, which learns
to map from a set of pitch-based auditory features to a grouping
cue encoding the posterior probability of a time–frequency (T–F)
unit being target dominant given observed features. We devise a
novel objective function for the learning process, which directly
relates to the goal of maximizing signal-to-noise ratio. The models
trained using this objective function yield significantly better
T–F unit labeling. A segmentation and grouping framework is
utilized to form reliable segments under reverberant conditions
and organize them into streams. Systematic evaluations show
that our approach produces very promising results under various
reverberant conditions and generalizes well to new utterances and
new speakers.

Index Terms—Computational auditory scene analysis (CASA),
monaural segregation, room reverberation, speech separation, su-
pervised learning.

I. INTRODUCTION

R OOM reverberation happens in everyday listening and
it creates a considerable challenge to speech separation.

While humans excel in “hearing out” a target source from
sound mixtures in noisy and reverberant conditions, simulating
this perceptual ability remains a fundamental challenge [57].
This paper is concerned with monaural separation of rever-
berant voiced speech, in which only monaural recordings are
available. Monaural speech separation has many applications
including hearing aid design and noise removal for automatic
speech recognition.

Various methods have been proposed for monaural speech
enhancement or separation, including spectral subtraction
[8], Wiener filtering [14], [36], minimum mean square error
(MMSE) estimation [19], and subspace analysis [20]. However,
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strong assumptions about the interference (e.g., quasi-station-
arity) in these methods limit their application in dealing with
a general acoustic background. A class of speech separation
algorithms models the underlying sources and fits the learned
models to the observations. The essence of such algorithms is
that the expected patterns of the sources are extracted through
training and then those patterns whose combinations best match
the observed signal are selected to estimate the sources. In [49],
speaker dependent Hidden markov models (HMMs) are trained
and combined into a factorial HMM architecture for computing
a masking function for separation. A modeling technique based
on composite source modeling is proposed in [44] to model
each source using a set of Gaussian subsources. A soft mask
filter is then derived using MMSE estimation for separating the
sources. These approaches can offer satisfactory solutions if
extracted source characteristics match the statistical properties
of mixed signals. This is, however, not always true leading to
some adaptation schemes for adjusting source models [59].
Rather than modeling each individual source, the relationships
between sources can also be learned using a discriminant
method. One example is the spectral learning approach which
is based on parameterized affinity matrices built from low-level
features and solves the separation problem by formulating it as
segmentation in a time–frequency (T–F) plane [4]. The perfor-
mance of these methods is unclear in reverberant conditions.

Inspired by human auditory perception [10], computational
auditory scene analysis (CASA) aims to separate a mixture
of sources into different auditory streams based on perceptual
principles [57]. CASA systems have significantly advanced
the state-of-the-art performance in monaural separation [11],
[25], [56], [58]. An ideal binary T–F mask has been proposed
as a computational goal of CASA [55]. Such a mask can be
constructed from prior knowledge of target and interference;
specifically, a value of 1 in the mask indicates that the target is
stronger than interference and 0 otherwise. Studies show that
speech reconstructed from the idea binary mask produces large
improvement in human speech intelligibility [3], [13], [35].
Such a goal has been shown to still be reasonable when room
reverberation is present [42], [47].

Pitch, or harmonic structure, has long been studied as a
prominent characteristic of speech signals and offers a major
cue for a listener to separate target speech from other sounds
[10]. The pitch cue has been applied successfully in monaural
CASA algorithms under anechoic conditions (e.g., in [25]).
However, the harmonic structure is distorted by reverberation
as reflections of each harmonic combine with the direct sound.
As a result, the performance of pitch-based CASA systems
suffers in room reverberation [12], [48]. To tackle this problem,
either the distorted harmonicity of the speech signal should be
restored, or the low-level cues and the means by which they
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Fig. 1. Schematic diagram of the proposed system. A reverberant mixture is processed in a three-stage system. The first stage analyzes the input signal by an
auditory filterbank in successive time frames and extracts pitch-based features within each time–frequency unit. In the second stage, multilayer perceptron (MLP)
is trained in every channel to associate those features with the grouping cues. T–F units are then labeled according to a criterion based on the MLP output. The last
stage performs segmentation and grouping. A target stream together with its background is formed.

are utilized should be improved. To restore speech harmonicity,
a commonly used method is to estimate and apply an inverse
filter of the room impulse response (RIR) corresponding to
the target and microphone locations [22], [48], [60]. Although
inverse filtering can partially counteract the smearing effect of
reverberation on the speech spectrum, it assumes that a room
configuration, e.g., room dimensions, wall reflection coeffi-
cients, source and microphone locations, etc., is stationary.
Any change in room configuration, like a source movement,
degrades the performance significantly [9], [45]. To quantify
such effects, we systematically evaluate the sensitivity of in-
verse filtering to a number of room configurations and different
reverberation times . As another drawback of inverse
filtering, filter estimation requires the absence of interference
[48], which is unrealistic for real-world application.

We focus on pitch-based features, and propose a supervised
learning approach to achieve robust performance against re-
verberation effects for voiced speech segregation. Based on
cochlear filtering, we extract a set of pitch-based features within
each T–F unit from a reverberant signal. In low-frequency chan-
nels, harmonics are resolved since a filter does not respond
to more than one harmonic due to its narrow bandwidth. In
high-frequency channels, harmonics are unresolved since, with
a wider bandwidth, a filter responds to multiple harmonics.
Therefore, the feature set should contain two subsets to be
sensitive to resolved and unresolved harmonics, respectively.
Each subset includes several features in order to account for
variations brought about by reverberation. To collectively
utilize the discriminative power of the feature set in a rever-
berant environment, we train a multilayer perceptron (MLP)
for each frequency channel in order to estimate a grouping cue
within each T–F unit. The grouping cue encodes the posterior
probability of a T–F unit being target dominant given observed
features. By analyzing the goal of maximizing signal-to-noise
ratio (SNR) in segregation, we formulate an objective function
for MLP training which takes into account of unit-wise errors
in a generalized form of mean squared error (MSE). Since it is
a continuous function of model parameters, an error backprop-
agation technique can be devised in order to maximize SNR. In
addition, we employ a new segmentation method to more reli-
ably compute auditory segments in reverberant environments.
Specifically, we use cross-channel correlation and temporal
continuity for segmentation in the low-frequency range because

they are observed to be relatively robust to reverberation [51]. In
the high-frequency range, we apply onset-offset detection [27]
to capture intensity variation and form segments by matching
pairs of detected onsets and offsets. The motivation behind this
is that auditory onsets are relatively unaffected by reverberation
because the direct path from a source is the shortest path [37].
Finally, the grouping stage organizes segments into streams.

The paper is organized as follows. In the next section,
we present an overview of the proposed system. Section III
describes how to extract pitch-based features and perform
MLP learning. A detailed description of the segmentation and
grouping stage is presented in Section IV. Section V provides
experimental results and comparisons. Section VI analyzes
system robustness quantitatively at the feature level. We discuss
related issues and conclude the paper in Section VII.

II. SYSTEM OVERVIEW

As shown in Fig. 1, the proposed system consists of three
stages. The first stage analyzes the input signal in the time–fre-
quency domain using an auditory periphery model. A T–F unit
corresponds to a certain channel in the filterbank at a certain
time frame. Normalized correlograms are then computed. In
order to detect both resolved and unresolved harmonics, audi-
tory features are extracted based on both the filter response and
the response envelope within each of the units. Section III-A
gives the detail of this stage.

The next stage is to label each of the T–F units using MLP.
Previous studies [25], [48] treat a single pitch-based feature as
the grouping cue and rely on thresholding for unit labeling.
Under reverberant conditions, such pitch-based features are no
longer reliable due to smeared harmonicity. Therefore, we use
multiple features to capture harmonicity within a unit and label
it using a trained classifier. Our training objective is to maxi-
mize the SNR performance instead of minimizing unit labeling
errors. This objective function makes the learning process cost
sensitive and leads to good segregation performance. Labeling
a unit based on the MLP output is treated from a probabilistic
perspective. Essentially, the MLP output is translated into the
posterior probability of a T–F unit belonging to the target and a
labeling criterion is consequently derived. This part is described
in Sections III-B and III-C.
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Segmentation and grouping are two integral parts of CASA
and we describe them together in the third stage. In segmenta-
tion, the input is decomposed into T–F segments, each of which
is a contiguous region deemed to mainly originate from a single
source. In grouping, those segments that likely come from the
same source are grouped into a stream by using pitch and other
grouping cues. To improve segmentation in reverberant condi-
tions, we apply different strategies in different frequency ranges.
Specifically, segmentation in low frequency merges T–F units
using cross-channel correlation and temporal continuity. In high
frequency, onset and offset detection is utilized. It is expected
that onset cues are robust to room reverberation in the light of
the precedence effect [37], which refers to the perceptual im-
portance of a direct sound or signal onset. Once segments are
formed, they are organized into the target or the interference
stream resulting in a binary mask where all T–F units are la-
beled 1 for the target stream and 0 elsewise. This mask gives
an estimate of the ideal binary mask and is used to resynthesize
segregated target speech. Details are presented in Section IV.

III. LEARNING GROUPING CUES

Our goal is to learn from a reverberant mixture detectable
cues that indicate whether target speech dominates in each T–F
unit. Specifically, we learn a mapping from a set of pitch-based
features to a grouping cue, which encodes the posterior proba-
bility of a T–F unit being target dominant.

A. Feature Extraction

To extract pitch-based features, an input mixture is
first decomposed into the time–frequency domain using a
gammatone filterbank and time windowing. This filterbank
is a standard model of cochlear filtering and is derived from
psychophysical studies of the auditory periphery [43]. We
use a 128-channel filterbank whose center frequencies are
quasi-logarithmically spaced from 50 to 8000 Hz. The response
of a filter channel is further transduced by the Meddis model of
auditory nerve transduction [39], which simulates the nonlinear
properties of inner hair cells and produces the firing rate of an
auditory nerve fiber, denoted by . Note that retains
the original sampling frequency. In each channel, the output
is divided into 20-ms time frames with 10-ms overlapping
between consecutive frames. The resulting time–frequency
representation is called a cochleagram with denoting a
T–F unit for frequency channel and time frame . This
is a standard procedure of peripheral analysis in CASA and
implementation details are presented in [57, ch. 1].

Then, the normalized correlogram for for
time lag is computed by the following autocorrelation:

(1)

where denotes the frame size. Since we use input mixtures
sampled at 16 kHz, . The range of the normalized
correlogram is [0,1] with value 1 at zero time lag.

Following [24, ch. 5], we construct a feature vector for each
. The first subset of three features is derived from the hair

cell output , suitable for detecting resolved harmonics in
low-frequency channels. Given the pitch period at frame

, is a quantitative measure of how the observed
signal in is consistent with . This measure has already
been used and proven to be effective under anechoic condi-
tions, and we consider it as a primary feature in the set. The
average instantaneous frequency can be estimated from
the zero-crossing rate of . When multiplying
with , the product provides an alternative way of periodicity
comparison and supplements the autocorrelation measure in the
feature set. So, the next two features are extracted out of this
product: the second feature, the nearest integer to the product,
indicates a harmonic number, and the third feature, the distance

between the product and the nearest integer, represents the
deviation between the two periods. As mentioned in Section I, to
detect unresolved harmonics, the second subset of three features
is based on the envelope of the hair cell output and the
corresponding normalized correlogram . Here, the
purpose is to extract amplitude modulation (AM) for high-fre-
quency channels and better reveals the periodicities of
these harmonics. To extract AM, we perform bandpass filtering
with the passband from 50 to 550 Hz, which corresponds to
the plausible pitch range of the target speech. The feature set
is given as

(2)

These features together form the basis for the grouping cue
which is robust to reverberation effects. When extracting the
harmonic features, the pitch period needs to be specified. To
remove the influence of pitch errors on the segregation system,
we obtain a priori pitch contours from the premixed reverberant
target speech using Praat [7].

The desired value of the grouping cue is defined to
be 1 if is dominated by the target stream and 0 otherwise,
consistent with the notion of the ideal binary mask [55] which
labels a T–F unit as target if and only if target energy is greater
than interference energy within that unit. Thus, the ideal binary
mask provides the desired values of .

B. MLP Training

We use an MLP to learn the grouping cue from
the pitch-based features . One MLP is trained for each
channel. Training usually minimizes an objective function (i.e.,
error function) defined as the square distance between desired
and actual outputs. Our previous study [31] uses a conventional
MSE objective function, defined as

(3)
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where and are desired (binary) and actual outputs,
frame index, the total number of frames, and channel

index. The model using the above objective function performs
reasonably well [31]. However treats all T–F units equally.
Such treatment may not be optimal—a T–F unit with higher en-
ergy contributes more to the overall SNR than a unit with lower
energy. In other words, minimizing does not necessarily lead
best SNR performance.

In order to derive an objective function that directly relates
to the goal of maximizing SNR, we start by analyzing the SNR
definition. Since the computational goal of our proposed segre-
gation system is to identify T–F regions that are target dominant,
we use the same SNR measure in [25], which regards the resyn-
thesized signal from the ideal binary mask as ground truth

(4)

Here, and are signals resynthesized from the ideal
binary mask and an estimated mask, respectively. Consider the
SNR in a single channel as training is independently conducted
within individual channels. To maximize the overall SNR, we
maximize SNR in each channel. Rewrite (4) for a single channel
as

(5)

where represents the mixture energy within , calcu-
lated as the sum of squares of the unit response. is an
actual binary label, binarized from . From (5), it is intu-
itively clear that minimizing the denominator maximizes .
Therefore, we define the new objective function as

(6)

Note that the function is modified from the denominator in
(5) in order to make it differentiable, needed for applying gra-
dient descent learning. The denominator in (6) is added for the
purpose of normalization [cf. (3)]. It is worth mentioning that
is a generalized form of MSE, with each squared error weighted
by normalized energy within the corresponding T–F unit.

From the machine learning point of view, the inclusion
of weights in a classification task is known as cost-sensitive
learning. It is optimal learning when different misclassification
errors incur different penalties, which is exactly the situation
we face. The backpropagation algorithm is adapted to learn
MLP parameters. In theory, each of the weights in (6) acts as
a constant factor in the partial derivative . So the delta rule
can be easily rewritten. It should be noted that the normaliza-
tion term in (6) is necessary to ensure the convergence of the
modified backpropagation algorithm [32]. In implementation,
we train one MLP for each channel. Each MLP has the same
network topology with six input nodes, 20 hidden nodes,
and one output node. The number of hidden nodes is chosen
based on tenfold cross-validation. The transfer function of the
hidden and output layers are both hyperbolic tangent sigmoid.
During training, we use in conjunction with a generalized
Levenberg–Marquardt backpropagation algorithm [23] which

achieves fast convergence by avoiding the computation of the
Hessian Matrix.

C. MLP-Based Unit Labeling

For each T–F unit , we apply the trained MLP to fea-
ture vector yielding . It should be noted that each
channel has a separately trained MLP, as illustrated in Fig. 2.
We then use this grouping cue to label . Formally speaking,
the trained MLP estimates the posterior probability directly [6],
[41], therefore the grouping cue can be described as

(7)

where is the hypothesis of being target domi-
nant. Let be the hypothesis of being interfer-
ence dominant. Consequently, we define the unit labeling
criterion: A T–F unit is labeled as target speech if

. Due to the fact that
and sum to one, the above inequality can be
written as . Hence, this crite-
rion can be simplified as

(8)

Note that the above criterion is based on the assumption that
the priors and remain unchanged during training
and labeling phases. When we interpret the MLP output as an
estimate of the posterior probability, this estimate encapsulates
prior information according to the Bayes rule. In other words,
the decision rule is optimal only if there is no mismatch be-
tween training and test priors. When this condition is violated,
the decision rule becomes suboptimal and possibly unaccept-
able [1]. Although this is not a concern in our paper, we dis-
cuss in Section VII circumstances in which such a mismatch
may occur and possible solutions to compensate the classifier
for more reliable performance.

IV. SEGMENTATION AND GROUPING

The segmentation and grouping stage segregates a rever-
berant mixture into a target and an interference stream. T–F
unit labeling gives one way of segregation; however, it is
error-prone because a local unit is too small for robust deci-
sions in the presence of interference and room reverberation.
This is supported by a comparison between the segregation
results at unit and segment levels [25]. To utilize more global
information of the source that is missing from individual units,
we adopt the stage of segmentation in CASA (see [57, ch. 1])
and form segments on the T–F plane based on auditory cues. A
segment is a contiguous region of T–F units and segment-level
information is expected to provide a more robust foundation
for grouping.

To segment reverberant mixtures, we apply two different
strategies in different frequency ranges. Specifically, in low
frequency (below 800 Hz), we merge T–F units into segments
based on cross-channel correlation and temporal continuity
[56]. The first cue arises from the fact that a single harmonic
or formant activates a number of adjacent channels due to their
overlapping bandwidths and their responses are highly corre-
lated. In addition, a signal usually lasts for some time, which
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Fig. 2. Applying multilayer perceptron (MLP) in unit labeling, where a binary decision, target or interference dominant, is made in each T–F unit. The MLP for
each channel is shown as a two-layer diagram, with six dimensional features (vertical dots) as inputs. In the above cochleagram, the units labeled as target dominant
are indicated by white and those labeled otherwise are indicated as black.

implies temporal continuity. The cross-channel correlation is
calculated as

(9)

where is a normalized autocorrelation function with
zero mean and unit variance and is the maximum delay for the
plausible pitch range. Only units with sufficiently high cross-
channel correlation—greater than 0.99 [26]—are selected and
iteratively merged into segments.

It is widely known that amplitude modulation effects of unre-
solved harmonics occur in high-frequency channels. In segmen-
tation, the cross-channel correlation , which is calcu-
lated from (cf. (9)), has been proven to be useful
[26]. However, since is susceptible to room reverber-
ation [51], is sensitive to reverberation, which hin-
ders its application (see Section V). Signal onsets, on the other
hand, are largely unaltered by room reverberation because the
direct sound arrives earlier than its echoes. Once onsets are de-
tected, offsets are determined by searching for the highest inten-
sity drop between two consecutive onsets. Therefore, we pro-
pose that high-frequency regions be segmented using onset and
offset detection [27]. This method first smooths signal intensity
over time in individual frequency channels to reduce insignifi-
cant fluctuations and then over frequency to enhance synchro-
nized onsets and offsets. It then detects onsets and offsets from
smoothed intensity in each channel. Segments are formed by
matching pairs of onset and offset fronts, which are the ver-
tical contours connecting onset and offset candidates across fre-
quency. In order to achieve a compromise between over- and
under-segmentation, a multiscale integration is applied from a
coarse scale to a fine scale. Along the scale change, new seg-
ments are created and existing segments are better localized.

The segments obtained from the above two methods
are combined to form complete segmentation. Specifically,
cross-channel correlation based segments in the low-frequency
range are first kept. If a segment crosses the low- and high-fre-
quency ranges, its high-frequency portion is also maintained.
Onset/offset based segments are then included; if some part of

a new segment is covered by the existing segments, this part is
removed before the segment is added. Fig. 3 compares segmen-
tation with and without using onset and offset cues. As can be
seen in Fig. 3(b), more significant segments in high frequency
are detected, indicating more effective segmentation using
onset/offset analysis. Unlike [26] which only uses onset/offset
analysis for segmenting unvoiced speech (their voiced speech
segmentation is based entirely on cross-channel correlation),
our use of onset/offset based segmentation is limited to the
high-frequency range and deals with voiced speech.

With unit labels obtained in Section III-C together with T–F
segments, we group each segment into the target stream if the
energy corresponding to its T–F units with target labels (1 s)
dominates, i.e., greater than the energy of the T–F units with
non-target labels (0 s). Finally, to group more units into the
target stream, we expand each segment in the target stream by
iteratively recruiting its neighboring units that are labeled as
target and do not belong to any segment [26]. Consequently, a
binary mask is formed and the segregated target speech can be
resynthesized from this mask for performance evaluation [57,
ch. 1].

Before presenting evaluation results, it may be useful to
briefly contrast our system with that of Hu and Wang [26] (see
also [25]) for segregating voiced speech. Despite the similarity
in final grouping (as pointed out above), these two systems
differ in major ways. The most important difference is that we
employ supervised learning for T–F unit labeling using a set of
pitch-based features, while their unit labeling approach involves
no learning and uses two features. Our model uses two methods
for segmentation in the low-frequency and high-frequency
ranges, whereas their model uses cross-channel correlation
for segmentation at all frequencies. These differences lead to
substantially better performance in our system when dealing
with reverberant speech, as reported in the next section.

V. EVALUATION AND COMPARISON

A. Corpus Generation

To simulate typical room acoustics, we use the image model
which is commonly applied for efficient simulation of the
acoustic properties of enclosures [2]. The basic idea of the
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Fig. 3. Example of segmentation. (a) Segmentation using cross-channel correlation. (b) Segmentation using cross-channel correlation in low-frequency range
and onset/offset analysis in high-frequency range. The input signal is the reverberant mixture of a voiced utterance and a pure tone in a simulated room whose
� � ��� s. White indicates background. Regions of different gray levels indicate different T–F segments.

Allen–Berkley image model is that the room impulse response
(RIR) can be represented as an infinite number of image
sources that are created by reflecting an acoustic source in
six room walls. In such a model, a pair of physical locations,
corresponding to the source and the microphone, decide RIR in
a fixed room. In order to simulate both convolutive and additive
distortions, we specify the locations of the target and one
interfering source and one more location for the microphone.
More specifically, we start with anechoic target speech
and anechoic interference . We then generate a simulated
room and randomly create a set, , representing
locations of the target, the interference, and the microphone
inside the room, respectively. From these locations, two RIRs
are calculated by

(10)

and

(11)

is the RIR corresponding to the recorded target at the
microphone, and corresponds to the recorded interference
at the same microphone. Both and are causal finite-
impulse response (FIR) filters. denotes the image model
discussed above, which calculates the RIR with respect to the
input location pair. Consequently, a reverberant mixture is
constructed by

(12)

where “ ” denotes convolution. We use as a coefficient in
order to set mixture SNR to 0 dB. The goal of our system is
to segregate the reverberant target from the mixture

.
In order to systematically evaluate the proposed system under

different reverberant conditions, we simulate six acoustic

TABLE I
SETTINGS OF SIX ACOUSTIC ROOMS (L: LENGTH, W: WIDTH, H: HEIGHT)

Fig. 4. Room configurations with three sets of locations �� � � � � � ran-
domly created in an enclosure. Each line indicates the direct transmission path
from the source to the microphone, corresponding to one RIR. For clarity, the ex-
ample room is shown in two dimensions, though the simulations are performed
in three dimensions. The solid line represents the RIR from which the inverse
filter is estimated.
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Fig. 5. Effects of inverse filtering on room impulse responses. (a) A RIR generated by the image model. The source and the microphone are at (4, 0.9, 1) and (2,
1, 1) respectively in Room 3, as listed in Table I. (b) The result of convolving the RIR in (a) with the estimated inverse filter. (c) A different RIR function in the
same room but with the source location changed to (0.6, 2.4, 1). (d) The result of convolving the impulse response in (c) with the same estimated inverse filter.

rooms with different sizes and their reverberation times
range from 0.1 to 0.6 s in steps of 0.1 s. Table I shows detailed
room specifications. In each room, we randomly create three
sets of locations as mentioned above, resulting in three sets of

and three sets of reverberant mixtures created
by (12). For example, Fig. 4 illustrates a simulated room with

s. The room size is m (length, width, height),
but the figure only shows the first two dimensions for clarity.
The pentagram, the circle and the asterisk display locations of

in each set respectively.
Our evaluation first uses Cooke’s corpus [15], which contains

100 noisy utterances constructed by mixing ten anechoic voiced
utterances (target speech) and ten different types of interference.
In the aforementioned way, we generate a total of 1900 mixtures,
with the original 100 mixtures in anechoic and mix-
tures in reverberant conditions. We further evaluate the proposed
system using utterances from the TIMIT speech corpus [21] as
target speech. Four speakers, two males and two females, are
randomly selected from “DR1” through “DR4” dialect regions,
respectively. For each speaker, we mix ten anechoic utterances
with the same ten interferences to generate 1900 mixtures. The
simulated rooms and source and microphone locations are the
same as in the evaluation with Cooke’s corpus.

B. Sensitivity of Inverse Filtering

As mentioned in Section I, one main problem with the inverse
filtering approach is the sensitivity to even small changes in
the acoustic environment. In other words, if an inverse filter is

estimated from the same RIR used in segregation, i.e., matched
inverse filtering, it is expected to enhance speech harmonicity;
otherwise, it may further smear the harmonic structure. In this
subsection, we quantitatively analyze such effects on Cooke’s
corpus under different conditions. It should not only clarify
the problem but also offer a good connection to the results in
Section V-D, where the proposed model is compared with an
inverse filtering based system. Fig. 5 illustrates the effects of
applying the same inverse filter to a matched RIR and a mis-
matched RIR with the source location moved. As can be seen
in Fig. 5(b), the equalized response in the matched condition
is much impulse-like, indicating the success of reverberation
attenuation, while as shown in Fig. 5(d) the mismatched condi-
tion leads to further smearing.

We quantitatively evaluate the sensitivity of inverse filtering
in terms of signal-to-reverberant energy ratio (SRR). SRR is an
indicator of intelligibility of reverberant speech [30] and hence
provides a measure of the effectiveness of inverse filtering. SRR
is defined as

(13)

where is the instantaneous sound pressure of the RIR mea-
sured at time , and is the arrival time of the first peak from
the reflected impulses. A larger SRR value indicates better in-
verse filtering. Table II shows the SRR improvement after ap-
plying the inverse filter to RIR’s in the six rooms in Table I.
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TABLE II
SIGNAL-TO-REVERBERANT RATIO (SRR) CHANGE (IN dB) BY

APPLYING AN ESTIMATED INVERSE FILTER TO EACH ROOM

IMPULSE RESPONSE FUNCTION. THE MATCHED INVERSE FILTERING

CONDITION IS SHOWN AS UNDERLINED BOLD

We have already created for each acoustic room six different
RIRs from three sets of described in Section V-A.
These six RIRs are named '' '' '' '' '' ''
as presented in Fig. 4, where subscript refers to the RIR from

and from in each set. The inverse filter is
estimated to equalize the RIR (“ ” in Room 3, the solid line
shows the direct path in Fig. 4) using [22]. To examine the sen-
sitivity of inverse filtering, this estimated inverse filter is used to
convolve with all RIRs and their resulting SRRs are
calculated accordingly. It is evident from Table II that signifi-
cant SRR improvement only occurs under the matched inverse
filtering condition (shown as underlined bold). The SRR drops
for almost all other cases, implying a further smearing effect
caused by mismatched inverse filtering.

Our empirical results are in accordance with the observa-
tion reported in [40], where it is stated that inverse filtering in-
creases the distortion when a response recorded at a different
position is employed for dereverberation. Radlovic et al. [45]
gave a theoretical analysis on the sensitivity of inverse filtering.
In their paper, a quantitative distortion measure of frequency re-
sponses is used based on the difference between the two transfer
functions from the source to the reference and to the displace-
ment point, respectively. The measure calculated in simulation
is in good agreement with their theoretical derivation and shows
that small changes in the source or microphone position on the
order of one-tenth of the acoustic wavelength cause significant
degradations in the equalized room response. It is also pointed
out that greater distortion is expected for high frequencies, in-
dicating higher sensitivity to position changes in the high-fre-
quency range.

C. SNR Results

Given that the computational objective of our segregation
system is to identify T–F regions that are target dominant, we
adopt the same SNR measure in [25] to assess the segregation
performance using the resynthesized speech from the ideal
binary mask as the ground truth. Equation (4) gives this mea-
sure. Considering that these harmonic features likely vary with
changing acoustic environments, we evaluate the proposed
system in three different scenarios which place different levels
of demand on generalization.

Fig. 6. Voiced speech segregation performance. SNR gain is measured under
room conditions with � ranging from 0 to 0.6 s. Case 1: trained on each � .
Case 2: trained on all � ’s. Case 3: trained on � � ��� s only.

Case 1: Reverberation time is known. In this case, our
evaluation is conducted within the same room but assesses
the system’s ability to generalize to different source/receiver
locations. For example, we train on one set of 100 reverberant
mixtures in Room 3 with s and test the resulting
system on the other two sets of mixtures in the same room
in terms of SNR gain (the improvement over the initial SNR
before segregation). The dotted line in Fig. 6 represents this
case. The performance curve depicts the SNR gain of seven
separate systems, each trained at a different . This curve
should represent the performance upper bound of our system
in unknown reverberant conditions. The observed performance
drop with increasing reverberation likely reflects the nature of
the ascending difficulty of segregation. In other words, segrega-
tion in highly reverberant conditions is probably a harder task
than in low reverberant conditions. Subjective tests reveal that
human listeners’ ability to separate competing voices degrades
with increasing levels of reverberation [17].

Case 2: With unknown , train on all different ’s.
Specifically, we form a training corpus with a total of 700
reverberant mixtures by using the first set of mixtures in each
room together with anechoic mixtures. The pentagram line in
Fig. 6 shows the system performance in this case. This way
of training gives a single system regardless of reverberant
conditions and the performance is only about 0.5 dB worse on
average compared to the known room case. A downside is that
training now becomes computationally more expensive since
the training set is seven times as large as training in a single
room. On a 2.8-GHz PC with 1-GB memory, Case 2 needs
39.48 h for training—roughly seven times 5.51 h needed in
Case 1.

Case 3: With unknown , train on a single . If we as-
sume reverberation time is more likely above 0.3 s which is
typical of rooms encountered in daily life [33], we can train at

s, the most reverberant condition because general-
ization to less reverberation may be better than the other way
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around. The rationale here is to obtain the best possible clas-
sifier under the least favorable condition, often referred to as
a MINIMAX solution [18], [54]. The SNR gain of this case is
the circle line in Fig. 6. Some degradation is observed, but the
system yields relatively good performance at high ’s.

Although the proposed system is designed to segregate re-
verberant speech, the above results suggest that our system also
works well in the anechoic condition s . Using mul-
tiple features for estimating the grouping cue, our system shows
a 13.8-dB SNR gain under the anechoic condition even when
it is trained at s. As a comparison, the segregation
system by Hu and Wang, which is designed for and tested on
voiced speech mixtures in anechoic conditions [25], produces
an SNR gain of 12.9 dB on the same corpus. This indicates that
our system performs a little better than the Hu–Wang system in
the anechoic condition. If training is matched with the anechoic
condition, our system achieves an SNR gain of 15.8 dB (see
Fig. 6) which is significantly higher than that of their system.

To separate the contributions of the features and training
strategies, we conduct experiments to compare classifiers
trained on different features and using different objective
functions. Fig. 7 gives the classification (unit labeling) perfor-
mance in terms of SNR gain in different reverberant conditions.
All classifiers are trained with one set of 100 reverberant
mixtures in Room 6 with s (as in Case 3). The
proposed classifier—using six features and generalized MSE
objective function—yields the top performance. Note that
its SNR gain is significantly lower than the one presented in
Fig. 6 because we measure the performance directly after the
unit labeling stage, i.e., without performing segmentation and
grouping. The classifier using just the two primary features

performs about 1.6 dB worse.
This margin reflects the contribution of the other four features
in encoding harmonicity under reverberant conditions. The
classifier trained using the conventional MSE objective func-
tion performs 1 dB below the proposed one, showing the benefit
of the generalized MSE objective function in MLP training.

We also compare alternative segmentation methods:
cross-channel correlation alone, onset/offset analysis alone,
and the proposed method which combines these two methods.
All methods use the same training with one set of 100 rever-
berant mixtures in Room 6 with s from Cooke’s
corpus. Fig. 8 shows the system performance in terms of
SNR gain in different reverberant conditions. The proposed
segmentation using cross-channel correlation in low fre-
quency and onset/offset analysis in high frequency yields
the best performance. The method using just cross-channel
correlation— in low frequency and in high
frequency—performs about 0.4 dB worse (0.6 dB worse if
measured just in the high-frequency range). This difference
indicates the utility of onset/offset analysis in the high-fre-
quency range. The method using onset/offset analysis across
all frequencies gives the worst performance. This method
forms segments by matching onset and offset fronts and
segment boundaries tend to be block-like, missing detailed
segment shapes. Although it performs a little better than the
cross-channel correlation method in the high-frequency range,
it underperforms the latter in the low-frequency range. Note that

Fig. 7. Comparison of SNR gains among classifiers using different feature sets
and different objective functions. Segmentation and grouping are not performed
in this comparison.

Fig. 8. Comparison of SNR gain between different segmentation methods.

the good performance reported in [27] is based on a region-level
measure not an SNR measure.

D. Comparison With Roman–Wang Model

In this subsection, we use Cooke’s corpus to compare the per-
formance of our proposed system to that of the inverse filtering
based approach by Roman and Wang [48]. In their system, an
inverse filter is first estimated by maximizing the kurtosis of
the inverse-filtered linear prediction residual of the reverberant
speech from the target location in the absence of interference
[22], [61]. Then, the obtained inverse filter is applied to the re-
verberant mixture consisting of both the reverberant target and
the reverberant interference. In order to make a fair comparison
between the Roman–Wang and the proposed system, we use the
same subset of reverberant mixtures for learning. Specifically,
in the Roman–Wang system, we use the same inverse filter (as
used in the above evaluation) that is estimated from the RIR of
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TABLE III
COMPARISONS OF SNR GAIN (IN dB) BETWEEN THE PROPOSED SYSTEM AND THE ROMAN–WANG SYSTEM.

MATCHED TRAINING CONDITIONS ARE SHOWN AS UNDERLINED BOLD

“ ” in Room 3. In the proposed system, MLP learning also
takes place on the reverberant mixtures generated by the first
set of in Room 3. Note that, like in our system, a
priori pitch contours are used in their system in order to gen-
erate results free from pitch detection errors. Table III summa-
rizes the SNR gain evaluation. Each number in the table presents
the average SNR gain on reverberant mixtures generated by a
particular set of in one of the rooms. The two
underlined numbers correspond to matched training conditions
as stated above. Their difference shows the advantage of the
proposed system when training and testing on the same set of
mixtures. The number at the bottom of each column is the av-
erage of the three sets, which provides the average SNR gain
in the same room. The SNR gains under the anechoic condi-
tion (not shown in the table) are 10.37 and 14.87 dB for the
Roman–Wang and the proposed system, respectively. As can
be observed in Table III, the proposed system achieves signifi-
cantly higher SNR gains across all different reverberation times
than the Roman–Wang system. The overall 3.4-dB improve-
ment is mainly brought about by accurate unit labeling in high
frequency: their system cannot reliably handle unresolved har-
monics in those regions for reverberant signals. Through MLP
training, the T–F units in both low and high frequencies can be
labeled in our system. Note that this improvement partly results
from segmentation using multiscale onset/offset analysis in high
frequency (see Fig. 8).

In [48], Roman and Wang reported a 1.3-dB difference be-
tween the systems with and without using inverse filtering when

s. Without inverse filtering as a preprocessing stage,
their system is quite similar to the Hu–Wang system [25], which
was discussed earlier. This implies that our system performs
much better than the Hu–Wang system when it is applied to re-
verberant mixtures. In other words, although there are reasons
to expect that pitch-based grouping may not be very sensitive to
reverberation, such separation algorithms unlikely perform well
without dealing with the issue of reverberation.

E. Evaluation on TIMIT

Here we evaluate how the proposed system generalizes to
new speakers and utterances. As described in Section V-A, four
speakers, two males and two females, are randomly selected
from the TIMIT database. We label the four speakers as: TrM,
TrF, TeM, and TeF, where “M” stands for male, “F” female, and

“Tr” and “Te” label speakers included in training and testing,
respectively. In order to compensate for the discrepancies be-
tween male and female speakers, we train on the first set of
mixtures at Room 6 from both genders. The training corpus
contains 200 mixtures, one half from TrM and the other half
from TrF. The resulting system may be called speaker-indepen-
dent (SI). For each speaker, we also train a system on the first
set of mixtures at Room 6 from that speaker only. These sys-
tems are called speaker-dependent, or SD. The motivation of
training a system for each speaker is to evaluate performance
in the matched training scenario, which offers a reference for
performance analysis. The SNR difference between SI and SD
indicates degradation due to unmatched training. Since utter-
ances from the TIMIT database contain unvoiced speech while
our system deals with only voiced speech, we calculate the SNR
at voiced speech frames only. Fig. 9 shows the SNR comparison
between SI and SD for each of the four speakers. Note that, the
SNR performance in Fig. 9 is lower than that of the previous
experiment due to the use of TIMIT sentences whose spectra
significantly overlap with those of interferences. The SNR gain
at each condition is averaged over all three sets of mixtures
in that condition, the same as the last row in Table III. TeM and
TeF are the test cases using entirely different speakers, within
which 70% of the sentences are new. The SI curve is not much
lower than the SD curve for these two speakers, demonstrating
that our system generalizes well to both unforseen speakers and
utterances. Note that degradation also exists in TrM and TrF, al-
beit smaller than those in TeM and TeF. This degradation arises
because the training corpus contains two speakers rather than
a single matching one. Table IV gives numeric results of av-
erage SNR degradation across all ’s for different speakers.
The maximum degradation is 0.67 dB for TeF, which is fairly
small compared to SNR performance variations for different
room conditions.

VI. ROBUSTNESS ANALYSIS

The feature-based learning in our proposed system shows
good generalization ability to various reverberant conditions as
shown in Section V. For example, the system trained at Room
6 with s performs well in other room conditions.
Furthermore, the changes of source and microphone locations
within a room little affect our system performance. To under-
stand the surprisingly robust performance, this section provides
an analysis at the feature level.
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Fig. 9. Comparison of SNR gain between speaker-dependent (SD) and speaker-independent (SI) cases under room conditions with � ranging from 0 to 0.6 s.
TrM and TrF are speakers included in training and TeM and TeF in testing.

TABLE IV
AVERAGE SNR DEGRADATION (IN dB) IN THE SPEAKER-INDEPENDENT

SYSTEM RELATIVE TO SPEAKER-DEPENDENT SYSTEMS

Basically, the proposed system learns to distinguish between
target dominant (class 1) and interference dominant (class 0)
T–F units. Therefore, we reformulate the segregation problem
into two-class classification. Intuitively, if features are robust,
we expect that feature distributions in different reverberant con-
ditions are close to each other. Hence, the distance between dif-
ferent feature sets can be a quantitative measure of feature ro-
bustness. From another perspective, the distance between class
0 and class 1 subsets within one feature set describes the clas-
sification complexity (or data separability) [52]. Therefore, the
role of a distance measure is twofold: it models the feature vari-
ations in different reverberant conditions and it compares data
separability in those conditions at the same time. An example is

the following: Let be a distance measure. Consider two
feature sets , each having two subsets corresponding to
class 0 and class 1. A set of these subsets is constructed as

(14)

where indicates the subset of class in . On one hand,
and measure the similarity be-

tween and in the two classes. When both values are
small, good generalization from one set to the other is expected.
On the other hand, and measure
the separability of the feature sets, which relates to their perfor-
mance upper bound discussed in Section V-C.

We use the Constrained Minimum (CM) distance [53] as the
distance measure in this study. The CM distance is not only a
metric, but also capable of measuring classification complexity
because it is computed by comparing summary statistics of the
data sets. According to [53], the CM distance is derived using
the geometrical interpretation of the distribution and is of Ma-
halanobis type as

(15)
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Fig. 10. Visualization of the constrained minimum distance. Plus marks stand for class 0 subsets and cross marks for class 1 subsets. Each mark is labeled in the
form of “x.y” where x is the room index and y is the set index. “0” labels the anechoic situation.

where and are two data sets and their means are and
. represents the true underlying feature distribution func-

tion. Since it is an unknown term, we estimate it from and
and calculate its covariance matrix thereafter. In the

case of available feature sets in different reverberation con-
ditions, we have

(16)

The CM distance between every pair of the subsets in is then
calculated. To visualize the relationship between these subsets,
we reconstruct 2-D spatial locations from their CM distances
using the Metric Multidimensional Scaling (MDS) technique
[16], which transforms a distance matrix into a set of coordinates
such that the Euclidean distances derived from these coordinates
approximate as well as possible original distances.

Fig. 10 presents the 2-D visualization of the CM distance
of feature subsets. The 38 plotted subsets are derived from
19 feature sets, which correspond to the 19 sets of 100 rever-
berant mixtures generated from the voiced corpus described
in Section V-A. Different reverberant conditions are denoted
as where represents room index and

is set index. As shown in the figure, the features
from each room tend to cluster together, suggesting a strong
similarity between them. This indicates that our features are
robust to source/microphone location changes within a room.
Based on the observation that features in rooms with close ’s
also have relatively short distances, we can conclude that the
features are robust to different reverberant rooms when these
rooms have close ’s. On the right side (“ ”) of Fig. 10, there
is a clear pattern of position change with the change of .
Such a trend is not as prominent on the left side (“ ”) because
our features are pitch-based and background T–F units may
not be sensitive to such features. However, it will not affect the
comparison of classification complexity as the changes on the
left side are smaller than those on the right side and can there-
fore be ignored. Classification complexity can be compared by
measuring the distance between the and the mark of the
same label, which indicates that the two subsets come from
the same feature set. Fig. 10 suggests that the classification
in low ’s is easier because of its relatively large distance
while the classification in the most reverberant situation (i.e.,

s) is the most difficult. This is consistent with the
results in Fig. 6.

VII. DISCUSSION

A key problem in reverberant speech separation is smeared
harmonicity, which has negative impact on harmonic cues
and results in significant performance degradation in previous
CASA systems (e.g., [25]). The approach of inverting rever-
berant effects is sensitive to specific configurations, although it
achieves good performance in matched configuration. In this
paper, a set of six pitch-based features is extracted and these
features incorporate information of both filter responses and
their envelopes. Therefore, unlike [25] and [26], unit labeling
can be handled together. The harmonic index and the deviation
from the nearest harmonic, first proposed in [24], are demon-
strated in this study to be effective supplementary features in
modeling harmonicity under reverberant conditions—when
excluding those features in the feature set, the overall perfor-
mance has a significant drop in our experiment. MLP provides a
way to combine these features into a unified grouping cue. Sig-
nificantly different from other CASA systems, our supervised
learning approach produces substantially better performance
and generalizes well to different reverberant conditions. It is
worth emphasizing that the proposed system also generalizes
well to unseen speakers and utterances.

In the Bayesian framework, MLP may be viewed as an op-
timal classifier that discriminates target-dominant units from
those belonging to the interference. One common problem of
designing a classifier is the uncertainty in a priori class proba-
bility. Although the current study controls the SNR of all mix-
tures at 0 dB in both training and test phases, the above problem
is of concern when SNR varies. For example, when testing on
10-dB mixtures, the system tends to label fewer target units than
it should, indicating a bias towards the interference class. A
common practice to increase system robustness against uncer-
tain priors is training the classifier over a data set with the least
biased priors [5], [34]. To use a training corpus of 0-dB mixtures
is consistent with the above idea. However, the use of a training
set with equal priors represents a solution that is unbiased to-
wards any priors, but it does not theoretically imply robustness
against other priors [1]. Some research provides clues [38], [46],
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[50] on how to work with different SNRs. An adaptive solution
uses incoming information to reduce the uncertainty and im-
prove the classifier. More specifically, the SNR of the incoming
mixture can be estimated to infer real priors and then the classi-
fier can be adapted according to estimated priors [28].

Determination of pitch is a fundamental problem in CASA
and reliable pitch estimation is critical for applying harmonic
grouping. Although pitch may be a relatively robust feature to
reverberation [60], few pitch determination algorithms are de-
veloped in both noisy and reverberant conditions. In this paper,
we use a priori pitch, calculated from reverberant target speech
before mixing, and future study needs to address the pitch de-
termination problem in room reverberation.

Segregation of unvoiced speech, not dealt with in this paper,
is an important and little studied problem in CASA presum-
ably because of the difficulty of the task. Unvoiced speech lacks
harmonicity and is more susceptible to interference due to its
relatively weak energy compared to voiced speech. Under ane-
choic conditions, acoustic-phonetic features have been recently
used to segregate unvoiced speech from nonspeech noise [28].
When interference is relatively stationary, spectral subtraction
can be used to remove noise within intervals of unvoiced speech
with noise estimation from intervals of segregated voiced speech
[29]. No study has been performed on unvoiced speech segre-
gation in reverberant conditions, and this is a topic that requires
future research.

In summary, we have proposed a system capable of segre-
gating reverberant target speech. Two novel ideas are employed.
First, a supervised learning approach establishes the mapping
from a set of pitch-based features to a grouping cue and a new
objective function is proposed to maximize SNR. Second, a
multiscale onset/offset analysis is employed to form reliable
segments in the high-frequency range.
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