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Abstract— The min-plus theory of greedy shapers has been devel-
oped after Cruz’s results on the calculus of network delays. An ex-
ample of greedy shaper is the buffered leaky bucket controller. The
theory of greedy shapers establishes a number of properties such as
the series decomposition of shapers or the conservation of arrival con-
straints by re-shaping. It applies in all rigor either to fluid systems, or
to packets of constant size such as ATM. For variable length packets,
the distortion introduced by packetization affects the theory, which is
no longer valid. In this paper, we elucidate the relationship between
shaping and packetization effects. We show a central result, namely,
the min-plus representation of a packetized greedy shaper. We find a
sufficient condition under which series decomposition of shapers and
conservation of arrival constraints still hold in presence of packeti-
zation effects. This allows us to demonstrate the equivalence of im-
plementing a buffered leaky bucket controller based on either virtual
finish times or on bucket replenishment. However, we show on some
examples that if the condition is not satisfied, then the property may
not hold any more. This indicates that, for variable size packets, un-
like for fluid systems, there is a fundamental difference between con-
straints based on leaky buckets, and constraints based on general ar-
rival curves, such as spacing constraints. The latter are used in the
context of ATM to obtain tight end-to-end delay bounds. In this pa-
per, we use a min-plus theory, and obtain results on greedy shapers
for variable length packets which are not readily explained with the
max-plus theory of Chang.

Keywords— Network Calculus, Shaper, Min-Plus Algebra, Leaky
Bucket

I. INTRODUCTION

We consider some of the problems caused by traffic reg-
ulation for flows of variable length packets. While the orig-
inal work by Cruz in [1] defines a leaky bucket regulator
as a system handling variable length packets, the theory
of regulators (which we now call “greedy shapers”) that
was later developed by Agrawal, Chang, Cruz, Le Boudec,
Okino and Rajan [2], [3], [4], [5] either focused explicitly
on flows of constant size packets (namely ATM), or applies
only to fluid systems. We say that we have “bit-by-bit”
greedy shapers. The theory of bit-by-bit greedy shapers is
extremely powerful (in its context); it allows to establish a
number of invariance or optimality properties such as the
series decomposition of shapers or re-shaping keeps orig-
inal arrival constraints (see Section II-A for more details).
These properties have been used for example for design-
ing schedulers [6]. The theory applies to leaky buckets, but
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also to other types of constraints, for example, spacing con-
ditions used in ATM networks (see Section II-B).

For variable length packets, the distortion introduced by
packetization affects the theory, which is no longer valid.
We use the concept of packetizer, introduced in [7], [8], [9],
which models the effect of variable length packets. In many
cases, packetizers weaken the bounds obtained with a fluid
model by one packet size of maximum size, however, as
recalled in Section II-D, in some cases this distortion may
be accumulated at every node. Shapers are important in
the context of integrated as well as differentiated services;
they are known under terms such as token bucket, or leaky
bucket controllers. This motivates us to understand the ef-
fect of variable packet sizes on the properties of shapers,
which is the objective of this paper.

Chang introduces in [10] an alternative theory for vari-
able length packet, based on max-plus representations. As
shown in Section II-E, the max-plus theory applies to
slightly different shaping systems, since the concept of ar-
rival constraints under this theory does not exactly match
the usual practice for leaky bucket controllers. In addition,
we find fundamental results that go beyond the results avail-
able in [10].

We take a theoretical look at the issue, and obtain both
fundamental and practical results. Firstly, we introduce the
concept of packetized greedy shaper and obtain their input-
output representation (Theorem III.1). We find a condi-
tion under which this representation can be considerably
simplified (Theorem III.3). These two findings constitute
our main theoretical contribution. Secondly (Section IV-
B), we find a sufficient condition under which re-shaping
a flow of variable length packets does keep original ar-
rival constraints. We use this to show that, if the condi-
tion is satisfied, the series decomposition of shapers still
holds for variable size packets. However, we show on
some examples that if the condition is not satisfied, then
the property may not hold any more. Thirdly, we consider
two commonly used alternative implementations of leaky
bucket controllers, which we call the “virtual finish time”
and the “bucket replenishment” implementations. We show
that both implementations produce the same packet output
(Corollary IV.1).

The paper is organized as follows. Section II reviews



2

the state of the art on greedy shapers, recalls the concept
of packetizers, as introduced in [10], and gives our nota-
tion, together with a few minor new results on packetiz-
ers. We also describe constraints that are not based on
leaky buckets but are used in practice. Section III is the
main theory. First, we introduce the concept of packetized
greedy shaper and obtain its input-output characterization.
Then we find a condition under which the concatenation
of a bit-by-bit greedy shaper and a packetizer keeps arrival
constraints, which allows us to derive a number of practical
results. Section IV derives some applications to leaky buck-
ets; we examine whether a packetized greedy shaper keeps
arrival constraints, and whether a series decomposition re-
sult holds. The proofs of all theorems are put in appendix,
except for the proofs of Theorem IV.1 and Theorem IV.2,
which are short and have some interest of their own.

II. STATE OF THE ART

A. Regulator, Buffered Leaky Bucket Controller and Bit-
By-Bit Greedy Shaper

We say that a flow is σ-smooth, or has σ as arrival curve,
for some function σ(t), if the number of bits observed on
the flow during a time interval of duration t is ≤ σ(t). The
IETF uses a generic family of arrival curves of the form
σ(t) = min(M + pt, b + rt) where M is interpreted as a
maximum packet size, p a peak rate, b a burst tolerance and
r a sustainable rate [11]. Similarly, a “buffered leaky bucket
controller” is a system which forces a flow to be σ-smooth,
with σ(t) = minm=1,...,M (rmt + bm), while delaying the
packets as little as possible. This is traditionally interpreted
by saying that the controller observes a set of M fluid buck-
ets, where the mth bucket is of size bm and leaks at a con-
stant rate rm. Every bucket receives li units of fluid when
packet i is released (li is the size of packet i). A packet is
released as soon as the level of fluid in bucket m allows it,
namely, has gone down below bm − li, for all m. We will
use a variant of this definition later in this paper; for clarity,
we say that we have defined now a buffered leaky bucket
controller based on “bucket replenishment”.

A variant of the buffered leaky bucket controller was
studied in a continuous time setting by Cruz in [1] under
the name of “(b, r) regulator”. The regulator is associated
with a bucket of fluid which leaks at a constant rate r; a
packet is released as soon as the level of fluid in the bucket
does not exceed b. The output of the regulator has a con-
stant rate C, which corresponds to a physical line rate. The
output of such a regulator is σ-smooth, with

σ(t) = rt + b +
(
1 − r

C

)
lmax (1)

where lmax is the maximum packet size. This variant differs
from the standard definition by the term 1−r

C lmax and by the
fact that it explicitly accounts for a line rate C at the output.

As we will see in detail in Section II-E, the set of outputs of
such regulators is not identical with the set of packet flows
that are σ-smooth, with σ given by Equation (1). Thus this
form of regulator is not exactly a buffered leaky bucket con-
troller.

In [2], Cruz refined the concept in discrete time with con-
stant size packets. It was found in particular that regulators
can be combined to synthesize systems that force a flow to
be σ-smooth where σ is any concave and piecewise linear
wide-sense increasing1 function. The optimality of regu-
lators was established, namely, a regulator in discrete time
forces its output to be σ-smooth, and does it as early as
possible. This was used to show that regulators enjoy some
remarkable properties, for example, if a regulated flow is
passed through a second regulator, then the final output
keeps the arrival curve constraint imposed by the first regu-
lator. In the discrete time setting, the regulator is exactly a
buffered leaky bucket controller.

The concept was further generalized independently in
[3], [4], [5] under various names. In the context of this pa-
per, we call them “bit-by-bit” greedy shapers. Given some
wide-sense increasing function σ, a greedy shaper takes
some flow as input and forces its output to be σ-smooth;
it delays the input data in a buffer, whenever sending data
would violate the constraint σ, but releases them as soon
as possible. This generalizes the concept of buffered leaky
bucket controller, this latter system corresponding to a func-
tion σ which is piecewise linear and concave. Section II-B
discusses some cases that are used in practice and cannot be
expressed with leaky buckets (because σ is not concave).

The theory shows that, without loss of generality, we can
assume that σ(0) = 0 and that σ is sub-additive, namely,
σ(s + t) ≤ σ(s) + σ(t). Wide-sense increasing func-
tions that are “star-shaped” (namely, σ(t)/t is wide-sense
increasing) are sub-additive [10]. Concave, wide-sense in-
creasing functions σ such that σ(0) = 0 are star-shaped,
thus sub-additive, but there are useful sub-additive func-
tions that are not concave and not even star-shaped (see
Section II-B). The cornerstone result in the theory of bit-
by-bit greedy shapers is the input/output characterization
of greedy shapers. Call R(t) the cumulative input function
(namely, the number of bits observed in time interval [0, t])
and R∗(t) the output of the greedy shaper; we have

R∗(t) = inf
0≤s≤t

(σ(s) + R(t− s)) = (σ ⊗R)(t) (2)

The right-handside in the equation is called the min-plus
convolution of σ and R. The associativity and commuta-
tivity of min-plus convolution can then be used to derive a
number of “physical” properties of shapers [3], [4], [5], two
of which we recall now.

1We say that function f(·) is wide-sense increasing if s ≤ t always
implies f(s) ≤ f(t).
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1. Reshaping keeps arrival constraints: Consider a flow
R(t), which is originally α-smooth, and is input to a shaper
with shaping curve σ. The output is R∗ = R ⊗ σ. Since
the input is α-smooth, it is not modified by a shaper with
shaping curve α, thus R = R ⊗ α. Thus R∗ = (R ⊗ α) ⊗
σ; by associativity and commutativity of ⊗, it follows that
R∗ = (R⊗σ)⊗α = R∗⊗α and thus R∗ is α-smooth. We
will see that this result does not generally hold in presence
of packetization effects.
2. Series decomposition of shapers: Consider a tandem
of shapers numbered 1, ...,m, ...,M ; shaper m has a shap-
ing curve σm, feeds shaper m + 1, and is fed by the out-
put of shaper m − 1. Call R the input; it follows imme-
diately from Equation (2) that the final output is R∗ =
R⊗ (σ1 ⊗ ...⊗σM ). Thus the tandem of shapers is equiva-
lent to a shaper with curve σ = σ1⊗ ...⊗σM . If σm is star-
shaped for all m and σm(0) = 0 then σ = min(σ1, ..., σM ).
This establishes that a buffered leaky bucket controller with
shaping curve σ(t) = minm=1,...,M (rmt + bm) can be im-
plemented as a series of single leaky bucket controllers.
Note that the series decomposition can be made in any or-
der. We will show that this results still holds (for leaky
buckets, not in general) in presence of packetization effects.

The theory in [2], [3] is for discrete time systems with
constant packet sizes, and thus applies without restriction
to ATM systems. In contrast, and unlike the original results
in [1], [12], the theory of greedy shapers in [4], [5] applies
to continuous time and flows with variable packet size, but
does not account for packetization effects. In this context,
the greedy shaper characterized by Equation (2) outputs a
continuous stream of bits, not entire packets; see for exam-
ple Figure 1. This is why we call it a “bit-by-bit greedy
shaper”. In some cases, it is a good model: for example, a
constant bit rate trunk with rate C is modeled with a bit-by-
bit greedy shaper with σ(t) = Ct (for t ≥ 0). In general,
though, regulators used in various packet scheduling meth-
ods output entire packets and cannot strictly be modeled
with a bit-by-bit greedy shaper, but can be captured by the
concept of “packetizer”, recalled in Section II-D.

B. Non concave arrival curves

Much attention has been given to concave arrival curves,
because they naturally appear with leaky buckets. However,
non concave arrival curves are sometimes used in the con-
text of ATM or of switch dimensioning. As an example, we
use in this paper the “stair function” vT , defined by

vT (t) =
{ � t

T � if t > 0
0 if t ≤ 0

It can easily be seen that, for any T and k there is equiva-
lence between saying that a flow R(t) is kvT -smooth and
saying that, for any time t ≥ 0:

R(t + T ) −R(t) ≤ k (3)

For packets of fixed size equal to k data units, this is equiva-
lent to a spacing condition [13]. Figure 2 shows an example
of shaper with shaping curve of the form σ = kvT .

Consider an ATM switch receiving n connections, each
of them perfectly shaped with peak rate T .2The aggregate
flow is nvT -smooth; characterizing this aggregate flow with
a concave arrival curve would lead to looser dimensioning
bounds. This is used for example in [14], [13] to obtain
tight end-to-end delay jitter bounds for an ATM network
which are not obtainable if leaky bucket characterizations
would be used instead.

C. Distortions dues to packetization

In this section we illustrate the fact, mentioned earlier,
that the theory of bit-by bit greedy shapers in [3], [4], [5]
does not apply to systems that have the constraint of releas-
ing entire packets.
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Fig. 1. A constant rate server, followed by a packetizer, does not
keep arrival constraints. The input R(t) is constrained to be σ-
smooth. The output of the bit-by-bit constant rate server, R∗(t),
is α-smooth, as predicted by the theory of bit-by-bit shapers.
The final, packetized output R(1)(t) is not α-smooth.

A first example is pointed out by Pla and Guérin in [15].
Consider a flow, which is known to be α-smooth, for some
function α, fed into a server of constant rate c. For a fluid
or ATM system, we know from “re-shaping keep arrival
constraints” that the output must also be α-smooth. Now if
we assume that the output is in packet form, and that packet
sizes are not all identical, then this is no longer true. The
details of an example, taken from [15], are as follows (see
Figure 1) . The input flow R(t) sends a first packet of size
l1 = lmax at time T1 = 0, and a second packet of size l2 at

2A more involved example would use vT,τ (t) = � t+τ
T

� for t > 0 in
order to account for cell delay variation tolerance
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time T2 = l2
r . Assume that α(t) = lmax + rt with r < C,

thus the flow R is indeed α-smooth. The departure time for
the first packet is T ′

1 = lmax
C . Assume that the second packet

l2 is small, namely l2 < r
C lmax; then the two packets are

sent back-to-back and thus the departure time for the second
packet is T ′

2 = T ′
1 + l2

C . Now the spacing T ′
2 − T ′

1 is less
than l2

r , thus the second packet is not conformant, in other
words, R(1) is not α-smooth. Note that this example is not
possible if all packets have the same size.

A second (original) example shows how distortion may
occur even if all packets have the same size. In Figure 2, we
see that the arrival curve constraint imposed by a bit-by-bit
greedy shaper can be lost after packetization.
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Fig. 2. Packetization may undo shaping. The input R(t) is made
of a burst of 10 packets of size 10 data units each. It is fed to
a bit-by bit shaper with shaping curve σ = 25vT . The output of
the bit-by-bit shaper is R∗(t). It is made of 25 data units every T

time units. The final output R(1)(t) results from packetization. It
is made of a burst of 2 packets at time 0, followed by a burst of 3
packets at time T , etc. It is not σ-smooth because of the bursts
of 3 packets, which corresponds to 30 data units, whereas σ-
smoothness requires that no more than 25 data units are sent
every T time units.

These two examples illustrate a relationship between
packetization and shaping. We will establish general results
in Section III-B.

D. The packetizer

Our analysis uses the concept of packetizer, [7], [8], [9],
[10] as a means to model packetization effect. We say that
a sequence L = (L(0) = 0, L(1), L(2), ...) is a “sequence
of cumulative packet lengths” if it is wide sense increasing
and

lmax := sup
n
{L(n + 1) − L(n)}

is finite. We interpret L(n) − L(n− 1) as the length of the
nth packet.

Now for any sequence of cumulative packet lengths L we

define function PL by

PL(x) = sup
n∈N

{L(n)1{L(n)≤x}} (4)

Intuitively, PL(x) is the largest cumulative packet length
which is entirely contained in x. Function PL is right-
continuous; if R is right-continuous, then so is PL(R(t)).
For example, if all packets have unit length, then L(n) = n
and for x > 0: PL(x) = 	x
. An equivalent characteriza-
tion of PL is

PL(x) = L(n) ⇐⇒ L(n) ≤ x < L(n + 1) (5)

Note also that

x− lmax < PL(x) ≤ x (6)

We also say that a flow R(t) is L-packetized if PL(R(t)) =
R(t) for all t.

An “L-packetizer” [7], [8], [9], [10] is defined as the sys-
tem which transforms an input R(t) into PL(R(t)). Fig-
ure 1 and Figure 2 both include a packetizer in tandem with
a bit-by-bit greedy shaper.

Some bounds for the effect of a packetizer can easily be
derived, based on the maximum packet size can easily be
derived. The following items come mostly from [10]. Con-
sider a system (bit-by-bit system) with L-packetized input
R and bit-by-bit output R∗, which is then L-packetized to
produce a final packetized output R(1). We call combined
system the system which maps R into R(1). Assume both
systems are first-in-first-out and lossless.

1. The per-packet delay for the combined system is defined
as supi(T ′

i −Ti), where Ti, T
′
i are the arrival and departure

time for the ith packet. It is identical to the maximum vir-
tual delay3 for the bit-by-bit system, without packetizer. In
other words, for computing packet delay, we may ignore
the packetizer.
2. Call B∗ the maximum backlog for the bit-by-bit system
and B′ the maximum backlog for the combined system. We
have B∗ ≤ B′ ≤ B∗ + lmax.
3. Assume that the bit-by-bit system offers to the flow a
maximum service curve γ and a minimum service curve β.
The combined system offers to the flow a maximum service
curve γ and a minimum service curve β′ given by β′(t) =
[β(t)−lmax]+. Thus packetizing weakens the service curve
guarantee by one maximum packet length. For example, if
a system offers a rate-latency service curve with rate R,
then appending a packetizer to the system has the effect
of increasing the latency by lmax

R . The rate-latency service
curve with rate R and latency T is defined by S(t) = R(t−
T )+. It is commonly used to model a generic scheduler.

3The virtual delay at time t is the time it takes to output all bits present
at time t. If the system is FIFO, it is the delay incurred by a hypothetical
bit that would arrive at time t
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4. If some flow S(t) has σ(t) as arrival curve, then
PL(S(t)) has σ(t) + lmax1{t>0} as arrival curve. For Fig-
ure 1 this tells us that the final output R(1) has σ′(t) =
σ(t)+ lmax1{t>0} as arrival curve, which is consistent with
our observation that R(1) is not σ-smooth, even though R∗

is. We will see in Section III that there is a stronger result,
in relation with the concept of “packetized greedy shaper”.

At this point, the alert reader may ask herself why it is
worth studying the distortion introduced by packetization
in the theory of shapers, since its effect may seem to be
limited to one packet. However, firstly, shaping variable
size packets does occur with differentiated and integrated
services at network ingress, and it is important to under-
stand it from a theoretical viewpoint. Secondly, we show
now that distortions due to packetization may accumulate
over network paths and lead to important discrepancies.

Item 1 says that appending a packetizer to a node does
not increase the packet delay at this node. However, packe-
tization does increase the end-to-end delay. Consider the
concatenation of the theoretical GPS node, with guaran-
teed rate R [16] and an L-packetizer (Figure 3). Assume
this system receives a flow of variable length packets. This
models a theoretical node which would work as a GPS node
but is constrained to deliver entire packets. This is not very
realistic, and we will see later in this section how to deal
with a realistic example, but it is sufficient to show one im-
portant effect of packetizers.

In the fluid model, the GPS node offers a rate latency
service curve with some rate R and 0 latency (in the sim-
plest case in [16]). By application of item 3, we find that
the combined node offers a rate-latency service curve with
rate R and latency T = lmax

R . Now concatenate m such
identical nodes, as illustrated on Figure 3. By application
of standard results, the end-to-end service curve is the rate
latency-function with rate R and latency T = m lmax

R . How-
ever, for the computation of the end-to-end delay bound, we
need to take into account item 1, which tells us that we can
forget the last packetizer. Thus, a bound on end-to-end de-
lay is obtained by considering that the end-to-end path of-
fers a service curve equal to the latency-function with rate
R and latency T0 = (m− 1) lmax

R . For example, if the orig-
inal input flow is constrained by one leaky bucket of rate r
and bucket pool of size b, then an end-to-end delay bound
is

b + (m− 1)lmax

R
(7)

There is a straightforward generalization of the above rea-
soning to the family of “guaranteed rate” (GR) nodes [17],
which contains PGPS or SCFQ schedulers, etc. and their
combination. A GR node is characterized by a rate R and
a latency v which captures the scheduler lateness, com-
pared to GPS; for example, for PGPS, v = M

C where M
is the maximum packet size across all flows and C is the
total server rate. It is shown in [18], Theorem 2.1.1, that a

GR node is the concatenation of a node offering the rate-
latency service curve with rate R and latency v, followed
by a packetizer. Using items 1 and 3 above, we find that
the concatenation of m GR nodes guarantees a delay bound
of b+(m−1)lmax

R + mv (with the same notation as for Equa-
tion (7))4.

We see on this example that the additional latency intro-
duced by one packetizer is indeed of the order of one packet
length; however, this effect is multiplied by the number of
hops, roughly speaking.

E. The max-plus theory of shapers

A dual approach to account for variable length packets
is introduced in [10]. It consists in replacing the definition
of σ-smoothness, mentioned above, by the concept of g-
regularity. Consider a flow of variable length packets, with
cumulative packet length L and call Ti the arrival epoch for
the ith packet. The flow is said to be g-regular if Tj − Ti ≥
g(L(j) − L(i)) for all packet numbers i ≤ j. A theory is
then developed with concepts similar to the greedy shaper.
The theory uses max-plus convolution instead of min-plus
convolution. The (b, r) regulator of Cruz is a shaper in this

theory, whose output is g-regular, with g(x) = (x−b)
r

+
.

Note that this theory does not exactly correspond to the
usual concept of leaky bucket controllers. More specif-
ically, there is not an exact correspondence between the
set of flows that are g-regular on one hand, and that are
σ-smooth on the other. We explain why on an example.
Consider the set of flows that are g-regular, with g(x) = x

r .
The minimum arrival curve we can put on this set of flows is
σ(t) = rt+lmax [10]. But conversely, if a flow is σ-smooth,
we cannot guarantee that it is g-regular. Indeed, the follow-
ing sequence of packets is a flow which is σ-smooth but not
g-regular: the flow has a short packet (length l1 < lmax) at
time T1 = 0, followed by a packet of maximum size lmax

at time T2 = l1
r . In fact, if a flow is σ-smooth, then it is g′-

regular, with g′(x) = (x−lmax)
r

+
. Nonetheless, this theory

is a very elegant and powerful complement to the min-plus
theory in [3], [4], [5].

In this paper we focus on the properties of regulators,
and on the min-plus theory rather than the max-plus. As
a consequence, our results apply to the usual definition of
leaky bucket controllers and arrival constraints as given in
Section II-A.

III. THE PACKETIZED GREEDY SHAPER

We now give a more fundamental look at the issue of
packetized shaping. We introduce the concept of Packe-
tized Greedy Shaper as a natural abstraction of the buffered

4In [10] there is a slightly weaker formula, with mlmax instead of (m−
1)lmax.



6

� � �
�

� � � � � �

� � � � � � � � � � � �  � ! � � " � # 
 � � � " � $ % �

� � �
�

� � �
�

Fig. 3. The concatenation of several GPS fluid nodes with packetized outputs

leaky bucket controller.

A. Definition and Representation of Packetized Greedy
Shaper

Definition III.1: [Packetized Greedy Shaper] Consider
an input sequence of packets. Call L the cumulative packet
length. We call packetized shaper, with shaping curve σ, a
system which forces its output to have σ as arrival curve and
be L-packetized. We call packetized greedy shaper a pack-
etized shaper which delays the input packets in a buffer,
whenever sending a packet would violate the constraint σ,
but releases them as soon as possible.

The buffered leaky bucket controller defined in Sec-
tion II-A is clearly a packetized greedy shaper with

σ(t) = min
m=1,...,M

(rmt + bm)

If some bucket size bm is less than the maximum packet
size, then it is never possible to output a packet: all packets
remain stuck in the packet buffer, and the output is 0. In
general, if σ(0+) < lmax then the the packetized greedy
shaper blocks all packets for ever.5 Thus, for practical
cases, we have to assume that the arrival curve σ has a dis-
continuity at the origin at least as large as one maximum
packet size. Our first main result is the following.
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Fig. 4. Representation of a packetized greedy shaper, as given by
Theorem III.1.

Theorem III.1: (I/O Characterisation of Packetized Greedy
Shapers) Consider a packetized greedy shaper with shaping

5σ(0+) = inft>0 σ(t) is the limit to the right of σ at 0.

� � � � � � + � , �

� � 
 �

� ,

� � � � � � + � , �

� � 
 �

� ,

� � � �

� ,

� � � �

� ,

� � � �

� ,

� � � �

� ,

� � � � � � + �

� ,

� � � � � � + �

� ,

� � � � � � + �

� ,

Fig. 5. Example of output of a packetized greedy shaper. The input
data R(t) (a burst of 10 packets of size 10 data units, at time 0),
the shaping curve (σ = 25vT ) and thus R(1) are the same as
on Figure 2. R(i) is obtained by passing R(i−1) first through a
bit by bit greedy shaper, then trough a packetizer, as illustrated
by Figure 4. R(4) is σ-smooth, therefore R(5) = R(4) and the
iteration stops.

curve σ and cumulative packet length L. Assume that σ is
sub-additive and σ(0) = 0. The output R(t) of the packe-
tized greedy shaper is given by

R = inf
{
R(1), R(2), R(3), ...

}
(8)

with R(1)(t) = PL((σ ⊗ R)(t)) and R(i)(t) = PL((σ ⊗
R(i−1))(t)) for i ≥ 2.

Figure 4 illustrates the theorem; Figure 5 shows the itera-
tive construction of the output on one example. As another
example, the reader can check that if σ(t) = Ct for t ≥ 0
(thus the condition σ(0+) < lmax is satisfied) then the re-
sult of Equation (8) is 0.

Theorem III.1 is of theoretical nature and will be used in
the rest of this paper to derive some applications; as such,
it does not explain how to implement a packetized greedy
shaper in practice. However, we show in the next section
that there is an important special case where the construc-
tion in Theorem III.1 can be considerably simplified.
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B. A special case of interest

We have seen that appending a packetizer to a greedy
shaper weakens the arrival curve property of the output.
There is however a case where this is not true. This case is
important by its application to Theorem III.3, but also has
practical applications of its own. The following constitutes
our second main theoretical result.

Theorem III.2: Consider a sequence L of cumulative
packet lengths and a sub-additive function σ with σ(0) = 0.
Assume that




There exists a sub-additive function σ0

and a number l ≥ lmax such that
σ(t) = σ0(t) + l1t>0

(9)

For any L-packetized input, the output of the concatena-
tion of the bit-by-bit greedy shaper with shaping curve σ,
followed by an L-packetizer, is σ-smooth.

� � � � � � � � � � � 
 � � � �

� ��

� � � � � � � � � � � 
 � � � �

� ��

Fig. 6. Theorem III.2 says that if R(t) is L-packetized and σ satisfies
Equation (9), then R(1) is σ-smooth.

Figure 6 illustrates the theorem. Note that in general the
output of the bit-by-bit greedy shaper is not L-packetized,
even if σ satisfies the condition in the theorem. Similarly,
if we relax the assumption that the input be L-packetized,
then the output of the concatenation of the bit-by-bit greedy
shaper and an L-packetizer is not σ-smooth, in general
(finding counter-examples is easy and is left to the reader’s
enjoyment).

Discussion of the Condition in Equation (9): Equa-
tion (9) is satisfied in practice if σ is concave and σ(0+) ≥
lmax. This occurs for example if the shaping curve is de-
fined by the conjunction of leaky buckets, with all bucket
sizes at least as large as the maximum packet size.

This also sheds some light on the example in Figure 1:
the problem occurs because the shaping curve σ(t) = ct
does not satisfy the condition.

The alert reader will ask herself whether a sufficient con-
dition for Equation (9) to hold is that σ is sub-additive and
σ(0+) ≥ lmax. Unfortunately, the answer is no. Con-
sider for example the stair function σ = lmaxvT . We
have σ(0+) = lmax but if we try to decompose σ into
σ(t) = σ0(t) + l1{t>0} we must have l = lmax and
σ0(t) = 0 for t ∈ (0, T ]; if we impose that σ0 is sub-
additive, the latter implies σ0 = 0 which is not compatible

with Equation (9).6

Counter-example: We can find shaping curves σ that do
satisfy σ(t) ≥ lmax for t > 0 but which still do not satisfy
Equation (9). From the previous paragraph, such functions
have to be non-concave. In such cases, the conclusion of
Theorem III.2 may not hold in general. Figure 2 provides
an example where this occurs.

Realization of Packetized Greedy Shaper : If Equa-
tion (9) is satisfied, then the realization of a packetized
greedy shaper is simplified.

Theorem III.3: Consider a sequence L of cumulative
packet lengths and a sub-additive function σ with σ(0) = 0.
Assume that σ satisfies Equation (9). Consider only inputs
that are L packetized. Then the packetized greedy shaper
for σ and L can be realized as the concatenation of the
bit-by-bit greedy shaper with shaping curve σ and the L-
packetizer.

IV. APPLICATIONS

In this section we apply the previous theory to some
properties of leaky buckets and to two properties of shapers.
We give the proofs inline, as they illustrate in a compact
way the use of our method based on min-plus operators.

A. Buffered Leaky Buckets

Theorem III.2 gives us an alternative implementation of
the buffered leaky bucket controller. We build it as the con-
catenation of a buffered leaky bucket controller operating
bit-by-bit and a packetizer. We compute the output time
for the last bit of a packet (= finish time) under the bit-
by-bit leaky bucket controller, and release the entire packet
instantly at this finish time. If each bucket pool is at least
as large as the maximum packet size then Theorem III.2
tells us that the final output satisfies the leaky bucket con-
straints. Note that this implementation differs from the
buffered leaky bucket controller based on bucket replenish-
ment introduced in Section II-A. In the former, during a
period where, say, bucket m only is full, fragments of a
packet are virtually released at rate rm, bucket m remains
full, and the (virtual) fragments are then re-assembled in
the packetizer; in the latter, if a bucket becomes full, the
controller waits until it empties by at least the size of the
current packet. Thus we expect that the level of fluid in
both systems is not the same, the former being an upper
bound. However, we have the following equivalence, which
directly follows from Theorem III.3 and the discussion after
Theorem III.2.

Corollary IV.1: For packetized inputs, the implementa-
tions of buffered leaky bucket controllers based on bucket

6The same conclusion unfortunately also holds if we replace sub-
additive by “star-shaped” [10].
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replenishment and virtual finish times are equivalent, pro-
vided that all bucket sizes are at least as large as the maxi-
mum packet size.

B. Does a packetized greedy shaper keep arrival con-
straints ?

In general, we cannot expect a positive answer. Indeed,
Figure 7 shows a counter-example, namely a variable length
packet flow which has lost its initial arrival curve constraint
after traversing a packetized greedy shaper.

� � � � � �

�

�

Fig. 7. Non-conservation of arrival constraints by a packetized
greedy shaper. The input flow is shown above; it consists of
3 packets of size 10 data units and one of size 5 data units,
spaced by one time unit. It is α-smooth with σ = 10v1. The
bottom flow is the output of the packetized greedy shaper with
σ = 25v3. The output has a burst of 15 data units packets at
time 3. It is σ-smooth but not α-smooth.

However, if arrival curves are defined by leaky buckets
that are large enough, we do have a positive result.

Theorem IV.1: (Conservation of Concave Arrival Con-
straints) Assume an L-packetized flow with arrival curve
α is input to a packetized greedy shaper with cumulative
packet length L and shaping curve σ. Assume that α and σ
are concave with α(0+) ≥ lmax and σ(0+) ≥ lmax. Then
the output flow is still constrained by the original arrival
curve α.

Proof: We use the notation in Theorem III.1. Since σ
satisfies Equation (9), it follows from Theorem III.3 that

R = PL(σ ⊗R)

Now R is α-smooth thus it is not modified by a bit-by-bit
greedy shaper with shaping curve α:

R = α⊗R

Combining the two and using the associativity of ⊗ gives

R = PL[σ ⊗ (α⊗R)] = PL[(σ ⊗ α) ⊗R]

From our hypothesis, σ⊗α = min(σ, α)[10] and thus σ⊗α
satisfies Equation (9). Thus, by Theorem III.2, R is σ ⊗ α-
smooth, and thus α-smooth. �

If the condition in the previous theorem is not satisfied,
then the conclusion may not hold. A first example was

given at the beginning of this section, with non-concave
shaping curves. A second example, with a concave shap-
ing curve σ, but where σ(0+) is too small, was given in
Figure 1 (with σ(t) = ct).

C. Series decomposition of shapers

Theorem IV.2: Consider a tandem of M packetized
greedy shapers in series; assume that the shaping curve σm

of the mth shaper is concave with σm(0+) ≥ lmax. For
L-packetized inputs, the tandem is equivalent to the pack-
etized greedy shaper with shaping curve σ = minm σm.

Proof: We do the proof for M = 2 as it extends without
difficulty to larger values of M . Call R(t) the packetized
input, R′(t) the output of the tandem of shapers, and R(t)
the output of the packetized greedy shaper with input R(t).

Firstly, by Theorem III.3

R′ = PL[σ2 ⊗ PL(σ1 ⊗R)]

Now σm ≥ σ for all m thus

R′ ≥ PL[σ ⊗ PL(σ ⊗R)]

Again by Theorem III.3, we have R = PL(σ ⊗ R). More-
over R is L-packetized and σ-smooth, thus R = PL(R)
and R = σ ⊗R. Thus finally

R′ ≥ R (10)

Secondly, R′ is L-packetized and by Theorem IV.1, it is
σ-smooth. Thus the tandem is a packetized (possibly non
greedy) shaper. Since R(t) is the output of the packetized
greedy shaper, we must have R′ ≤ R. Combining with
Equation (10) ends the proof. �

It follows that a shaper with shaping curve σ(t) =
minm=1,...,M (rmt + bm), where bm ≥ lmax for all m, can
be implemented by a tandem of M individual leaky buck-
ets, in any order. Furthermore, by Corollary IV.1, every
individual leaky bucket may independently be based either
on virtual finish times or on bucket replenishment.

If the condition in the theorem is not satisfied, then the
conclusion may not hold. Indeed, for the example in Fig-
ure 7, the tandem of packetized greedy shapers with curves
α and σ does not have an α-smooth output, therefore it
cannot be equivalent to the packetized greedy shaper with
curve min(α, σ).

Thus, we have proven that the conservation and decom-
position properties established in [12] for (b, r)-regulators
holds for the more usually accepted definition of buffered
leaky bucket controller. However, we have also found that,
unlike the results for constant size packets in [3], [4], [5],
we cannot, in general, extend this property to any arbitrary
arrival curve.
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V. CONCLUSION

We have extended the min-plus theory of variable length
packet shaping and shown some fundamental results which
account for the distortion introduced by packetization ef-
fects. Our main results are the min-plus representation of
a packetized greedy shaper (Theorem III.1) and a condi-
tion under which shaping and packetization combine well
(Theorem III.2). This allows us to prove that, under some
assumptions, re-shaping a flow of variable length packets
does keep original arrival constraints, and that the series de-
composition of shaper holds. However, we show on some
examples that if the assumptions are not satisfied, then the
property may not hold any more. We also demonstrate the
equivalence of implementing a buffered leaky bucket con-
troller based on either virtual finish times or on bucket re-
plenishment.

Our results suggest that, for systems with variable size
packets, results on leaky buckets constraints do not extend
to general arrival curve constraints such as ones based on
spacing, contrary to what happens with fluid systems or
ATM. For example, in presence of variable size packets,
the series decomposition of shapers holds for leaky buck-
ets, but, in general, does not for other constraints such as the
spacing constraints that were used in the context of ATM to
obtain tight end-to-end delay bounds. In some sense, leaky
buckets may be more specific than the theory of bit-by-bit
greedy shapers may lead one to think.

VI. APPENDIX: PROOF OF THEOREMS

A. Proof of Theorem III.1

A straightforward proof is a direct application of the gen-
eral method in [19] or [18], after showing that the packe-
tizer is upper-semi-continuous and isotone. We give here
an alternative proof, which is essentially the same, but is
self contained. The theorem follows immediately from
Lemma VI.1, which in turn uses Lemma VI.2.

Lemma VI.1: Consider a sequence L of cumulative
packet lengths and a sub-additive function σ with σ(0) = 0.
Among all flows x(t) such that




x ≤ R
x is L-packetized
x has σ as arrival curve

(11)

there is one flow R(t) which upper-bounds all. It is given
by Equation (8).

Proof: If x is a solution, then it is straightforward to show
by induction on i that x(t) ≤ R(i)(t) and thus x ≤ R. The
difficult part is now to show that R is indeed a solution.
We need to show that the three conditions in Equation (11)
hold. Firstly, R(1) ≤ R(t) and by induction on i, R(i) ≤ R
for all i; thus R ≤ R.

Secondly, consider some fixed t; R(i)(t) is L-packetized
for all i ≥ 1. Let L(n0) := R(1)(t). Since R(i)(t) ≤
R(1)(t), R(i)(t) is in the set {L(0), L(1), L(2), ..., L(n0)}.
This set is finite, thus, R(t), which is the infimum of ele-
ments in this set, has to be one of the L(k) for k ≤ n0.
This shows that R(t) is L-packetized, and this is true for
any time t.

Thirdly, we have, for all i

R(t) ≤ R(i+1)(t) = PL((σ ⊗R(i))(t)) ≤ (σ ⊗R(i))(t)

thus
R ≤ inf

i
(σ ⊗R(i))

From Lemma VI.2, infi(σ ⊗R(i)) = σ ⊗R thus

R ≤ σ ⊗R

which shows the third condition. �
Lemma VI.2: (Convolution By A Fixed Function Is

Upper-Semi-Continuous) Consider some function σ(t)
with σ(0) = 0. Consider also a sequence of functions
xn(t) such that xn+1(t) ≤ xn(t) for all t and n and call
x = infn xn. Then

inf
n

(σ ⊗ xn) = σ ⊗ x

Proof: By definition of min-plus convolution, we have, for
all t ≥ 0:

(σ ⊗ xn)(t) = inf
s∈[0,t]

(σ(s) + xn(t− s))

thus, by “Fubini” formula for infimum [18], Theorem 3.1.1:

infn(σ ⊗ xn)(t) = infs∈[0,t],n∈N [σ(s) + xn(t− s)]
= infs∈[0,t] {infn∈N [(σ(s) + xn(t− s)]}
= infs∈[0,t] {σ(s) + infn∈N [xn(t− s)]}
= infs∈[0,t] [σ(s) + x(t− s)]
= (σ ⊗ x)(t)

�

B. Proof of Theorem III.2

We use the notation in Figure 6. We want to show that
R(1) is σ-smooth. We have R∗ = R ⊗ σ. Consider now
some arbitrary s and t with s < t. From the definition of
min-plus convolution, for all ε > 0, there exists some u ≤ s
such that

(R ⊗ σ)(s) ≥ R(u) + σ(s− u) − ε (12)

Now consider the set E of ε > 0 such that we can find
one u < s satisfying the above equation. Two cases are
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possible: either 0 is an accumulation point for E7 (case 1) ,
or not (case 2).

Consider case 1; there exists a sequence (εn, sn), with
sn < s,

lim
n→+∞ εn = 0

and
(R ⊗ σ)(s) ≥ R(sn) + σ(s− sn) − εn

Now since sn ≤ t:

(R ⊗ σ)(t) ≤ R(sn) + σ(t− sn)

Combining the two:

(R ⊗ σ)(t) − (R ⊗ σ)(s) ≤ σ(t− sn) − σ(s− sn) + εn

Now t− sn > 0 and s− sn > 0 thus

σ(t− sn) − σ(s− sn) = σ0(t− sn) − σ0(s− sn)

We have assumed that σ0 is sub-additive. Now t ≥ s thus

σ0(t− sn) − σ0(s− sn) ≤ σ0(t− s)

we have thus shown that, for all n

(R ⊗ σ)(t) − (R ⊗ σ)(s) ≤ σ0(t− s) + εn

and thus

(R ⊗ σ)(t) − (R ⊗ σ)(s) ≤ σ0(t− s)

Now from Equation (6), it follows that

R(1)(t) −R(1)(s) ≤ σ0(t− s) + lmax ≤ σ(t− s)

which ends the proof for case 1.

Now consider case 2. There exists some ε0 such that for
0 < ε < ε0, we have to take u = s in Equation (12). This
implies that

(R ⊗ σ)(s) = R(s)

Now R is L-packetized by hypothesis. Thus

R(1)(s) = PL((R⊗σ)(s)) = PL(R(s)) = R(s) = (R⊗σ)(s)

thus

R(1)(t) −R(1)(s) = PL((R ⊗ σ)(t) − (R ⊗ σ)(s)
≤ (R ⊗ σ)(t) − (R ⊗ σ)(s)

now R ⊗ σ has σ as arrival curve thus finally

R(1)(t) −R(1)(s) ≤ σ(t− s)

which ends the proof for case 2. �
7namely, there exists a sequence of elements in E which converges to 0

C. Proof of Theorem III.3

Call R(t) the packetized input; the output of the bit-by-
bit greedy shaper followed by a packetizer is R(1)(t) =
PL(R ⊗ σ)(t)). Call R(t) the output of the packetized
greedy shaper. We have R ≤ R thus R ⊗ σ ≤ R ⊗ σ
and thus

PL(R ⊗ σ) ≤ PL(R ⊗ σ)

But R is σ-smooth, thus R ⊗ σ = R, and is L-packetized,
thus PL(R ⊗ σ) = R. Thus the former inequality can be
rewritten as R ≤ R(1). Conversely, from Theorem III.2,
R(1) is also σ-smooth and L-packetized. The definition of
the packetized greedy shaper implies that R ≥ R(1) (for a
formal proof, see Lemma VI.1) thus finally R = R(1). �
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