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Abstract—Dampers are devices that reduce delay jitter in the
context of time-sensitive networks, by delaying packets for the
amount written in packet headers. Jitter reduction is required
by some real-time applications; beyond this, dampers have the
potential to solve the burstiness cascade problem of deterministic
networks in a scalable way, as they can be stateless. Dampers
exist in several variants: some apply only to earliest-deadline-
first schedulers, whereas others can be associated with any
packet schedulers; some enforce FIFO ordering whereas some
others do not. Existing analyses of dampers are specific to some
implementations and some network configurations; also, they
assume ideal, non-realistic clocks. In this paper, we provide a
taxonomy of all existing dampers in general network settings and
analyze their timing properties in presence of non-ideal clocks. In
particular, we give formulas for computing residual jitter bounds
of networks with dampers of any kind. We show that non-FIFO
dampers may cause reordering due to clock non-idealities and
that the combination of FIFO dampers with non-FIFO network
elements may very negatively affect the performance bounds. Our
results can be used to analyze timing properties and burstiness
increase in any time-sensitive network, as we illustrate on an
industrial case-study.

I. INTRODUCTION

Time-sensitive networks provide guarantees for applications
in the automobile, automation, space, avionics and video
industries [1]-[6]. IEEE Time Sensitive Networking (TSN)
working group [7] and the IETF Deterministic Networking
(DetNet) working group [8]] provide standardization for such
networks. The goal of time-sensitive networks is to fulfill flow
requirements on worst-case delay and jitter (defined as the
difference between worst-case and best-case delays), in-order
packet delivery, as well as zero congestion loss and seamless
redundancy [9]], [[10]. The emergeance of applications with
low jitter requirement in large-scale time-sensitive networks,
such as industrial Internet of Things [[11] and electricity dis-
tribution [12], questions the performance of existing queuing
and shaping mechanisms such as Credit-Based Shaper, IEEE
802.1Qch Cyclic Queuing and Forwarding (CQF) [[13]], and
Deficit Round Robin [14]]. This issue can be addressed with
dampers, which are mechanisms to reduce delay jitter in time-
sensitive networks [[15]-[17].

A damper delays every time-sensitive packet by an amount
written in a packet header field, called damper header, which
carries an estimate of the earliness of this packet with respect

This work was supported by Huawei Technologies Co., Ltd. in the frame-
work of the project Large Scale Deterministic Network. The authors thank
Bingyang Liu and Shoushou Ren for fruitful discussions.

to a known delay upper-bound of upstream systems. This
ideally leads to zero jitter; in practice, there is still some
small residual jitter, due to errors in acquiring timestamps
and in computing and implementing delays. As a positive
side effect, dampers create packet timings that are almost the
same as at the source, with small errors due to residual jitter,
and thus cancel most of the burstiness increase imposed by
the network. [18, Lemma 1]. The residual burstiness increase
that remains when dampers are used is not influenced by the
burstiness of cross-traffic. Thus, dampers solve the burstiness
cascade issue [[19]: individual flows that share a resource
dedicated to a class may see their burstiness increase, which
may in turn increase the burstiness of other downstream flows.
Furthermore, dampers are stateless, unlike some TSN shaping
mechanisms, e.g., Asynchronous Traffic Shaping (ATS) [20].
Solving the burstiness cascade in a stateless manner makes the
dampers of interest for large-scale time-sensitive networks.

Several implementations of dampers have been proposed;
the older ones are associated with specific schedulers such
as earliest-deadline-first [15[], [17] and static priority [16];
the recent implementations can coexist with any scheduling
mechanism [21]-[23]]. Some of these implementations enforce
dampers to behave in a FIFO manner [17], [21], [23] and
some do not [[16]], [22]. Analysis of damper is crucial to
provide guarantees for applications in the context of time-
sensitive networks. In the existing works, [22], [23|] did not
provide any analysis; others analyze only their implementation
and under limited assumptions on the network settings. Also,
existing analyses assume that the network operates with one
ideal clock; in practice, this assumption does not hold and may
have non-negligible side effects. Recently, the effect of non-
ideal clocks on regulators was analyzed and a clock model
was proposed in the context of time-sensitive networks [24],
which we use in this paper.

We first present a taxonomy of dampers that classifies
the existing implementations into dampers with or without
FIFO constraint. Then, under general network configuration
with non-ideal clocks, we provide formulas to compute tight
delay and jitter bounds for dampers without FIFO constraint
(Theorems (1| and E]); we see that the impact of non-ideal clocks
can be non-negligible in cases with low jitter requirements. As
a result of this analysis, we derive conditions in which clock
synchronization throughout a network does not affect the per-
formance of dampers. Moreover, we capture the propagation
of arrival curve at the output of dampers and see how this can
solve the burstiness cascade issue. Next, we show that existing



implementations of dampers without FIFO constraints may
cause undesired packet reordering due to clock non-idealities,
even in synchronized networks. This problem is avoided with
dampers that enforce FIFO constraints; however, the effect
on their timing properties was not analysed in the literature
and we bridge this gap in this paper. We model two classes
of dampers with FIFO constraint: re-sequencing dampers and
head-of-line dampers. For the former class, we show that when
all network elements are FIFO, the delay and jitter bounds
are not affected by the re-sequencing operation (Theorem [3).
For the latter class, there is a small penalty due to head-
of-line queuing, which we quantify exactly (Theorem [4). In
contrast, if some network elements are non FIFO, the jitter
bounds for dampers with FIFO constraint can be considerably
larger (Theorems [5] and [6). We finally evaluate our results in
an industrial case-study.

The rest of the paper is as follows. Section [lI| presents
the state-of-the-art. Section describes the system model,
terminology, clock model and all assumptions. Section
presents a taxonomy of the existing dampers. The analysis
of dampers without FIFO constraint is presented in Section
Packet reordering scenarios due to non-ideal clocks are
presented in Section The analysis of dampers with FIFO
constraint is given in Section Section provides a
numerical evaluation for an industrial case-study and Section
concludes the paper.

II. RELATED WORKS

The concept of dampers was introduced by Verma et. al
[15], under the name delay-jitter regulator, in combination
with earliest-deadline-first (EDF) scheduling. In this scheme,
a per-flow regulator is placed at every node to delay a packet as
much as its earliness in the previous node; the earliness is the
time difference between the delay that a packet was supposed
to experience and the actual delay that is measured by time-
stamping. Later, Zhang et. al. [[16] proposed Rate-Control
Static Priority (RCSP) scheduling to avoid coupling of delay
and bandwidth allocation in the EDF schedulers mentioned in
[15]]. We describe RCSP in Section

The term damper was first used by Rene Cruz [17] as a
conceptual network element that slows down the traffic passing
through it. In [[17]], dampers are used in relationship with
SCED (Service Curve Earliest Deadline) scheduling to avoid
extra queuing as was proposed by [16]. With this scheme,
called SCED+, a flow traverses a few virtual paths (each is
a sequence of switches) with guaranteed service curves and
damper curves. Then, at the entrance of each virtual path, for
every packet of the flow and every switch in the virtual path,
initial and terminal eligibility times are computed using the
service and damper curves; a packet is released from a switch
within its initial and terminal eligibility times.

Recently, a few implementations of damper are proposed
that can be used in combination with any scheduling mech-
anism. Grigorjew et. al. [21] implement damper as a shaper
in relation with Asynchronous Traffic Shaping (ATS), IEEE
802.1 Qcr [20]; we refer to their scheme as jitter-control ATS.
It is assumed in [21] that the input flows are constrained

by leaky-bucket arrival curve and all the elements inside the
network, including the switching fabrics, output port queues
and the ATS, are FIFO for the packets that share the same
queues inside ATS. Rotated gate-control-queues (RGCQ) [22]]
is an implementation of a damper integrated with the queuing
system of a scheduler. Flow-order preserving latency-equalizer
(FOPLEQ) [23] is as an extension of RGCQ to preserve the
per-flow order of the packets according to its entrance to
FOPLEQ. Section [I[V|describes the details of these implemen-
tations. These previous works do not provide delay analysis
or do it in restricted settings. In particular, clock non-idealities
are ignored. In [24] clock non-idealities are modelled in the
context of time-sensitive networks and the impact on timing
analyses is explained in detail. In this paper, we apply this
clock model to networks with dampers of various kinds.

Dampers can be used to reduce delay jitter and thus to
provide end-to-end services with a low jitter guarantee. An
alternative method to provide low jitter, Cyclic Queuing and
Forwarding (CQF), also known as Peristaltic Shaper, was
introduced by IEEE Time-Sensitive Networking (TSN) [13]],
[25, Annex T]. According to CQF, for each priority class, there
are two cyclic queues; in each cycle, while one queue is being
served, the other enqueues the arriving packets. The cycles
change periodically and the queues swap their operations with
each other. CQF relies on very different mechanisms and
assumptions than dampers; its analysis is out of the scope
of this paper.

III. SYSTEM MODEL

We consider a network that contains a set switches or
routers, hosts and links with fixed capacity. Every flow follows
a fixed path, has a finite lifetime and emits a finite, but
arbitrary, number of packets. We consider unicast flows with
known arrival curves at their sources (i.e. there are known
bounds on the number of bits or packets that can be emitted
by a flow within any period of time).

A. Terminology

We call jitter-compensated system (JCS) any delay element
or aggregate of delay elements with known delay and jitter
bounds, for which we want to compensate jitter by means of
dampers. This is typically the queuing system on the output
port of a switch or router used in time-sensitive networks. It
can also be a switching fabric or an input port processing
unit, or even a larger system. For time-sensitive flows, a JCS
should be able to time stamp packet arrivals and departures
using the available local times. It should also increment the
damper header field in every time-sensitive packet (if one is
present) by an amount equal to an estimate of the earliness
of this packet with respect to the known delay upper-bound
at the JCS for the class of traffic that this packet belongs to.
If no damper header is present, it inserts one, with a value
equal to the estimated earlinessﬂ The operation of the damper

'We choose this method of carrying earliness in packet headers for ease
of presentation. Another method consists in each JCS inserting a separate
damper header: a packet then has as many damper headers as JCSs between
dampers, and the earliness to be compensated at a damper is the sum of all
these values. The discussion of such methods is out of the scope of this paper,
as it does not affect the timing analysis presented here.



header update (DHU) unit is described in Section When
a time-sensitive flow crosses a JCS, for actual jitter removal to
occur, there must be a downstream damper on the path of the
flow. For example, if the JCS is a switch output port, the next
downstream damper is typically located on the output port of
the next downstream switch.

It is generally not possible, or required, to remove delay
jitter in all network elements, because time stamping and DHU
come with a cost. Therefore, it is required, for our timing
analysis, to consider what we call bounded-delay systems
(BDSs), defined as any delay element or aggregate of delay
elements with known delay and jitter bounds, and for which
we do not compensate jitter. Constant delay elements (e.g. an
output link propagation delay), variable delay elements with
very low jitter (e.g., very high speed backbone network) and
other delay elements without DHU unit are examples of BDSs.

A damper is a system that delays every time-sensitive
packet, using its local clock, for a duration approximately
equal to the damper header (if any, else the damper does not
delay the packet). Such a damper header was inserted/updated
in the upstream JCSs between this damper and the previous
upstream damper or the source of the flow. The damper
also resets the damper header, so that the next downstream
damper will see only the earliness accumulated downstream
of this damper. Designing a stand-alone damper is a challenge,
because such a damper may need to release a large number of
packets instantly or within a very short time, which might not
be feasible. This is why damper implementations are often
associated with queuing systems; then, the time at which a
damper releases a packet is simply the time at which the packet
becomes visible to the queuing system. We classify and model
existing designs of dampers in Section
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Fig. 1: A local-area time-sensitive network example.

Example 1. Fig. |l| shows an example flow path within a
local-area time-sensitive network where we want to compen-
sate the jitter imposed by the output queuing systems and
switching fabrics by means of dampers. Therefore, for each of
the switching fabrics and the queuing systems, a DHU unit is
placed to perform the damper header update; finally a damper
is placed before each queuing system to remove the imposed
jitter by the upstream switching fabric and queuing system.
For example, the damper in the first switch compensates the
jitter imposed by the queuing system of the source and the
switching fabric of the first switch. Note that the propagation
delay is constant and seen as a BDS. Here, the different clocks
need not to be synchronized.

Example 2. Fig. [J] shows an example flow path within a
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Fig. 2: A large-scale deterministic network example with no
jitter removal at backbone network.

large-scale deterministic network. Assume that the backbone
network has relatively low delay (because of high-speed links,
e.g. 100Gbps or more, worst-case delays tend to shrink [26])
and then the main source of jitter is the access network. For
a given class of traffic, we want to remove the jitter imposed
by the access network, in particular the forwarding plane and
output queuing of each access router (each is treated as a JCS);
therefore, each of these should have a DHU and a damper
upstream of the output queuing system. In this example, the
backbone network is modelled as a BDS; also, the source
is unaware of any downstream damper and does not have a
DHU and hence treated as a BDS. The jitter imposed by the
access network is removed, but not the jitter caused by the
backbone. The different clocks need not be synchronized and
the backbone nodes are unmodified.
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Fig. 3: A large-scale deterministic network example with jitter
removal at backbone network.
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Example 3. We continue in Fig. |3| with the previous exam-
ple but assume now that, for some class of traffic with very low
jitter requirement, the jitter induced by the backbone should
be compensated. In such a case, we need to treat the backbone
network as a JCS, i.e., we need to time stamp the arrival of
each time-sensitive packet to the backbone and modify their
damper header at the departure from the backbone. This can
be done as in Fig. [3| where, at the upstream provider edge
(PE) router, a time stamping unit should be added that inserts
a field in the packet header equal to the departure time of
each time-sensitive packet from the PE router in its local
time (this operation can be done within the upstream DHU
unit to avoid placement of a time-stamping unit); then at the
egress downstream PE router, a DHU is placed that reads the
departure time of the packet from packet header, removes it
from packet header, computes earliness with its local clock and
finally modifies the damper header. In this case, differently
from previous examples, the time stamping and DHU are
performed with different clocks; therefore, the PE routers
should be time-synchronized, as otherwise the computation of
earliness is impossible (time synchronization is never absolute



and, in sections and we analyze how to account
for clock non-idealities). The jitter induced by the backbone
network is compensated in the damper placed in the down-
stream PE router and hence removed. The PE routers must be
time-synchronized (in provider networks, they typically are);
backbone nodes are unmodified but deterministic packets carry
an additional header for timestamps.

B. Assumptions on the Clocks

We call Hrag the perfect clock, i.e. the international atomic
time (TAIE]). In practice, the local clock of a system deviates
from the perfect clock [24]. Typically the JCSs upstream
of a damper operate with different clocks than the damper
itself, and this can affect the performance of the damper
as we see in Section In time-sensitive networks, clocks
can be synchronized or non-synchronized. Non-synchronized
clocks are independently configured and do not interact with
each other; this corresponds to the free-running mode in [27}
Section 4.4.1]. When clocks are synchronized, using methods
like Network Time Protocol (NTP) [28]], Precision Time Proto-
col (PTP) [29], WhiteRabbit [30], Global Positioning System
(GPS) [31]], the occurrence of an event, when measured with
different clocks, is bounded by the time error bound (~ 1us
or less in PTP, WhiteRabbit, and GPS; ~ 100 ms in NTP).

We follow the clock model in [24], which applies to
time-sensitive networks. Consider a clock #; that is either
synchronized with time error bound w, or not synchronized (in
which case we set w = +00). Let d™' [resp. d*T21] be a delay
measurement done with clock H; [resp. in TAI], then [24]:

dHTAI _ d?'[I < min ((p — l)dHI + mn, 2(-‘)) P
1
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p p

where p is the stability bound and 7 the timing-jitter bound of
the clock ;. Note that this set of bounds is symmetric, i.e. we
can exchange the roles of H; and Hra; in (I). We assume that
the parameters w, p,n are valid for all clocks in the network,
i.e. we consider network-wide time-error, stability and time-
jitter bounds. When a flow has a™¢ as arrival curve with clock
H;, then an arrival curve in TAI is [24]:

aftrar ot oM (min {pt + 0, t 4 2w}) . 2

In a TSN network, p — 1 = 1074 [32, Annex B.1.1] and
1n = 2ns [32, Annex B.1.3.1]]; if the network is synchronized
with gPTP (generic PTP) then w = 1us [32, Section B.3] and
if it is not synchronized then w = +o0.

C. Delay Jitter

For a given flow, call d,, the delay of packet n, measured
in TAIL. The “worst-case delay” of the flow is max,{d,}
where the max is over all non-lost packets sent by the flow
during its lifetime. Similarly, the “best-case delay” of the
flow is min, {d,}. The “delay jitter” (also called “jitter”) is
the difference, i.e., V = max,{d,} — min,,{d,,}, so that
dpy — d, <V for any m,n. Delay jitter is called IP Packet
Delay Variation in RFC 3393 [33].
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IV. TAXONOMY OF DAMPERS

As mentioned earlier, designing a damper is a challenge
and there exist very different implementations. In this section
we classify such implementations in a manner that will be
useful for our timing analysis. In the rest of this paper we call
“eligibility time” the time at which a damper releases a packet,
as in most implementations the packet is not actually moved,
but simply made visible to the next processing element.

A. Dampers without FIFO constraint

An ideal damper delays a packet by exactly the amount
required by the damping header. Consider a packet n with
damper header H,, that arrives at local time (),, to a damper.
The theoretical eligibility time E, for the packet is:

E,=Qn,+ H,, 3)

and the ideal damper releases the packet at time E,. litter-
control EDF [15]] is an ideal damper, used in combination
with an EDF scheduler.

Many other implementations of dampers use some tolerance
for the packet release times, due to the difficulty of implement-
ing exact timings. We call damper with tolerances (A, AY)
a damper such that the actual eligibility time E,,, of packet n,
in local time, satisfies:

E,—-A"<E, <E, +A". (4)

The tolerances can vary from hundreds of nanosecond to a few
microsecond based on implementation. Hereafter, we study
two instances of dampers with tolerances (AL, AY), namely,
RCSP [16] and RGCQ [22]

RCSP is an implementation of a damper in relation with
static-priority scheduler; each queue of the scheduler is im-
plemented as a linked list and the damper is implemented as a
set of linked lists and a calendar queue [34]]. A calendar queue
contains a clock and a calendar where each calendar entry
points to an array of linked lists (each for one priority queue).
The clock ticks every fix interval A. On each clock tick, the
linked list that the current clock time of the calendar points is
appended to the corresponding priority queue of the scheduler.
Whenever a packet n arrives, its theoretical eligibility time
is computed based on (3); then the actual eligibility time
of the packet, £, rcsp, is computed by rounding down the

theoretical eligibility time, E, rcsp = ALLL"J- Then, if
E,, rcsp is equal to the current clock time, it is appended to
the corresponding priority queue of the scheduler; otherwise,
it is appended to the linked list that the entry £, rcsp of the
calendar points to. The computation of theoretical eligibility
time is done with some errors in acquiring true local-time
on packet arrival and in computation due to finite precision
arithmetic that is bounded by & (typically, in the order of a
few nanoseconds). We can see that Ercgp satisfies when
(ALv AU) = (A +e¢,9).

RGCQ, inspired by the idea of Carousel [35], is an im-
plementation of a damper combined with a queuing system
of a scheduler; in other words, each queue of a scheduler is
replaced with an RGCQ. An RGCQ consists in a timer and



a set of gate-control queues (GCQs). By default, the GCQs
are closed and are assigned unique increasing openTimes with
interspacing of A. A GCQ is opened whenever the timer
reaches to its openTime and is closed after it is emptied or
being opened for a fixed amount of expiration time; when a
GCQ is closed, its openTime is set as the largest openTime+A.
The scheduler selects a packet for transmission from an
open GCQ with smallest openTime. Whenever a packet n
arrives, its theoretical eligibility time is computed based on
@; then the actual eligibility time of the packet, F, racq,
is computed by rounding up the theoretical eligibility time,

ie., By raoq = A[%]. Then, the packet is enqueued to the
GCQ whose openTime is F, racq. Similarly to RCSP, due
to timing acquisitions and arithmetic rounding bounded by e,
we see that Eracq satisfies @) when (AL, AY) = (e, A +¢).

B. Dampers with FIFO constraint

The definition of damper with tolerance given in the pre-
vious section does not mention whether the damper preserves
packet order, and the satisfaction of does not preclude
packet misordering. Indeed, we show in Section that our
two examples of dampers with tolerance, namely RCSP and
RGCQ, can cause packet misordering due to clock non-
idealities. Such a behavior is not possible with a class of
proposed damper designs, which enforce the FIFO constraint,
and which we now cover.

1) Re-sequencing damper: We call re-sequencing damper
with tolerances (AL, AV) a system that behaves as the concate-
nation of a damper with same tolerances and a re-sequencing
buffer that, if needed, re-orders packets based on the packet
order at the entrance of the damper. The packet order is with
respect to a flow of interest.

Formally, a system is a re-sequencing damper if there exists
a sequence E,, such that the release times for the flow of
interest, in local time, satisfy:

En_ALSEn SEn+AUa
E\=FE,, E,=max{E,, E, 1}, (%)

where E,, is the theoretical eligibility time defined in (3) and
packet numbers n = 1,2,... are in order of arrival at the
damper.

It follows that such a damper is FIFO for the flow of interest
and thafl
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We say that a re-sequencing damper is ideal if has zero tol-
erances. Hereafter, we describe two instances of re-sequencing
dampers, namely, SCED+ [17] and FOPLEQ [23]].

SCED+ is an implementation of a damper in combination
with SCED scheduling. The damper in [[17] is defined as
a conceptual element with tolerance A. Accordingly, each
packet is assigned an initial eligibility time and a terminal
eligibility time where the difference between the two is A. In
SCED+, the damper ensures that the damper is released after

3The converse does not hold, i.e., any system that is FIFO for the flow of
interest and satisfies (6) is not necessarily a re-sequencing damper.

the initial eligibility time and before the terminal eligibility
time. In fact, the dampers assigns a tentative eligibility time,

FE,, to a packet n, where:

En - A S Eﬂ, S En (7)

SCED+ assumes that the damper serves packets in FIFO
manner; then, the actual eligibility time of the packet n is:

Ey=FE), E,=max{E,, E,_1}; n>2. ®)

so that SCED+ is a re-sequencing damper with tolerances (A+
e,€), where ¢ is a bound on the errors on timing acquisition
and arithmetic rounding.

FOPLEQ, similarly to RGCQ, is inspired by the architecture
of Carousel [35]. Accordingly, it has a set of time-based
queues along with a table, called eligibility time table (ETT),
for the purpose of preserving the order of packets inside
FOPLEQ. Each row in ETT belongs to a flow that has a
packet in the Carousel and stores a tentative eligibility time
of the latest packet belonging to the corresponding flow. The
tentative eligibility time of a packet is obtained by dividing
its theoretical eligibility time by A and rounding down the
computed value. Consider a packet n of the flow of interest,
where number is in the order of arrival at the FOPLEQ. First
a theoretical eligibility time is computed using (3); second, a
tentative eligibility time is obtained by rounding down to a
multiple of A, i.e. E, = AL%J; then, the actual eligibility
time of the packet is the maximum of its tentative eligibility
time and the stored tentative eligibility time of the flow of
interest in the ETT. The tentative eligibility times correspond
to a damper with tolerances (A +¢, ¢), where ¢ is a bound on
the errors on timing acquisition and arithmetic rounding, and
therefore FOPLEQ is a re-sequencing damper with tolerances
(A+¢,e).

2) Head-of-line (HoL) damper: The idea is introduced in
[21]. A HoL damper is implemented as a FIFO queue. When
a packet arrives, its arrival time is collected and the packet is
stored at the tail of the queue. Only the packet at the head
of the queue is examined; if its eligibility time is passed, it
is immediately released, otherwise it is delayed and released
at its eligibility time. When the head packet is released, it
is removed from the damper queue and the next packet (if
any) becomes the head of the queue and is examined. When
an arriving packet finds an empty queue, it is immediately
examined. By construction, packet ordering is preserved.

As before, the model should incorporate some tolerance to
account for the timing inaccuracy and for processing times.
Unlike with previous damper models, these two things cannot
be aggregated because the head-of-line property has the effect
that processing times may have an effect over subsequent
packets (this is visible in Theorem ).

Formally, we model a head-of-line damper as follows. It has
tolerance parameters AL, AU that account for the accuracy of
timings, as well as processing bounds ¢™i", »™?* that account
for non-zero processing times. We must have AL > 0, AV > 0
and 0 < ¢™i" < ¢Ma%_ Packet numbering is with respect to the
order of arrivals at the damper and is global for this damper




(not per-flow). We say that a system is a head-of-line damper
if the release times F,,, in local time, satisfy:

E, - A< F < E; +AY,
maX(En —AYE, )+ < E,

< max(E, + AY, E,_1) + ¢, ©)

where E, is the theoretical eligibility time as in (3).

The definition in @]) can be explained as follows. First, the
eligibility times are obtained with some errors due to timing
acquisition and arithmetic rounding. Let E,, be the resulting
tentative eligibility times, so that

E,—-A"<E, <E,+A. (10)
Second, packet n is examined only when packet n — 1
is released, and this action takes a processing time ¢, €

[¢™in pmax] The actual release time is therefore
E, =max(E,, E,_1) + ¢n. (11)

Using Lemma [2| in Appendix with a = E,_y, 2™" =
(bmin’ pmax — (bmax’ ymin — En _ AL, ymax _ En + AU,
* = ¢, y=E, and 2 = E,, we obtain that and
imply @]); conversely, if @]) holds, there exists sequences E,
and ¢, € [¢™ ¢™2x] such that (T0) and (TT) hold.

If the tolerances and processing bounds are all equal to 0,
then the HoL damper is called ideal. It follows immediately
from (9) and (3) that an ideal HoL damper is the same as an
ideal re-sequencing damper.

In [21], Jitter-control ATS is presented as an ideal head-
of-line damper in combination with Asynchronous Traffic
Shaping [20] within a switch where each FIFO queue is shared
among all time-sensitive flows that come from the same input
port, have the same class, and go to the same output port.
In [21]], the authors implicitly assume that the tolerances and
processing times are zero and therefore ignore them in their
analysis. This assumption might not hold in practical cases,
specifically when a large number of packets become eligible
at the same time in a jitter-control ATS. The effect of non-zero
tolerances and processing times appear in Theorem ] and is
illustrated numerically in Section

C. Damper Header Computation

In this subsection, we first describe the operation of damper
header update unit. Then, we discuss the possible sources of
error in the computation.

1) DHU unit operation: The DHU unit of a JCS computes
the earliness of a packet and updates the damper header. A
classical approach to compute the earliness is to first measure
the actual delay of the packet in the JCS with the clock of
DHU unit; then set the earliness as the difference between the
known delay bound § of the system for this class of traffic and
the actual delay of the packet [15], [[16]. More precisely, for
a packet n, its arrival time is time stamped with local clock
Hrs and stored locally (Examples 1 and 2 in Section
or delivered by the packet (Example 3 in Section [[II-A); let
A?irs denote the stored/delivered value. Then the DHU unit
time stamps the departure time of the packet with its local

clock Hppu; let WTZ*DHU denote the departure time. Then,
the DHU unit computes the earliness of the packet as

earliness,, = § — (WZ{DHU — AZL{TS> . (12)

The last step for the DHU unit is to update the damper header
that is equal to the current damper header incremented by the
computed earliness, and write the result in the damper header
field. Then the packet leaves the JCS. In the case that the JCS
is connected to an output link, the departure time of a packet is
the complete packet transmission and thus the packet header
is accessible to write the damper header just before packet
transmission. Therefore, the start of transmission time of the
packet is time stamped (7/7'°1V) and the transmission time is

inferred as 7/{PHU = {%‘}HDHU with [,, as the packet length
and c as the transmission rate. Then, we set the departure time
to WHpnu — THouu 4 7Houu and compute the earliness
using (12). This method of damper header computation is
used in most of the existing damper variants like RCSP [16],
FOPLEQ [23] and jitter-control ATS [21f]. We call this the
default method of damper header computation.

Recently, [22] proposed a subtle change in the compu-
tation of earliness when a JCS comes immediately after a
damper with tolerances (A, AY). In particular, they suggest
to time stamp the theoretical eligibility time F, of packet
from the damper instead of the arrival time to the JCS; as
a consequence, the jitter imposed by the tolerance of the
damper is compensated by the next upstream damper. In
such proposal, note that the delay upper-bound between the
theoretical eligibility time to the arrival time to the JCS (i.e.,
the actual eligibility time from the damper) should be added
to the earliness; by (Ef[) this upper bound is AUY. Hence, the
earliness for theoretical eligibility time stamping is:

earliness,, = 6 + AY — (VV;‘DHU — AZ;LTS) . (13)

We call this method of damper header computation TE time-
stamping.

2) Errors in damper header computation: The DHU unit
computes a damper header equal to the current damper header
incremented by the computed earliness, and write the result
in the damper header field. This step is imperfect due to finite
precision arithmetic and finite resolution of the damper header.
The corresponding error is eypdate,n = Hpn — fIm where ]EIn
is the theoretical value of the damper header and H,, is the
actual value written in the packet.

In the computation of earliness ((T2) and (T3)), when A%rs
is delivered within a packet header field (Example 3 in Section
[I-A), there is some error induced due to the finite resolution
of the header field. The corresponding error is ey , = A’ yTS —
AMtrs | where A’ yTS is the time stamped value at the packet
arrival to the JCS.

As discussed earlier, when the JCS is connected to a
transmission link, the DHU unit can infer the transmission
time by dividing the packet length over the nominal transmis-
sion rate of the link. Due to transmission of preamble and
inexact knowledge of actual transmission rate, the inference
of transmission time is done with some error e anp
FHouu _ pHouU - where 7/iPHU and 7PHU are the actual



and inferred transmission times. The error €gyan,, can go up
to tens of nanoseconds [36]], [37].

Acquiring the true local-time on packet arrival and within
the DHU unit usually comes with an error. We define the

clock acquisition error as: ezoq.n = (WﬂDHU — W;{‘DHU) +

— A7) where ATtTs and WHPHU are the true
local times on packet arrival and departures.

The two clocks Hpyu and Hrg are often the same (Exam-
ples 1 and 2 in Section [[II-A), but not always (Example 3 in
Section [[II-A). We select Hpnu as the reference clock of a
JCS to compute damper header; then we define the error with
respect to the reference clock as: ecy, = AXruv — AMTs
where A*PHU g the time that would be displayed at packet
arrival if Hpyy would be used. If the clocks are the same,
eqx = 0; if the clocks are synchronized with error w with
respect to TAI,
synchronized, e.jx can get arbitrary large, which is incompat-
ible with the goal of removing jitter. Therefore, in this paper,
we assume that both clocks Hrg and Hpyy are either one
and the same, or are synchronized.

To summarize, the value of a damper header, as written
in a packet n, suffers from some error e, equal to: e, =
€update,n 1Cts,n TCtran,n+Cacq,n TEclk,n- Each of these sources
of error can be bounded, depending on the technology used
by the routers and switches. The variable € denotes an upper
bound on the error e,,, i.€., are
the same, € is typically of the order of tens of nanoseconds;
if they are synchronized, € is mainly dominated by the time
error bound (e.g. ¢ = 2 us for gPTP).

H
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V. DELAY ANALYSIS OF DAMPERS WITHOUT FIFO
CONSTRAINTS

In this section we study the end-to-end delay and jitter of a
flow when dampers without FIFO constraint are used. The first
step is to decompose a flow path into a set of blocks that can
be analyzed separately. Every block is as in Fig. i} it contains
a number of JCSs and BDSs and ends in a damper with
tolerance. The second step, given in the rest of this section,
is to give delay and jitter bounds for a flow through such a
block. The bounds are valid whether the JCSs and the BDSs
of the block are FIFO or not. The last step, to obtain end-
to-end results, simply consists in summing up the delays and
jitters of every block and, possibly, of remaining BDSs. For
example, in Fig. [2| from source to the first router and from the
queuing system of the last router to the destination are BDSs
and the rest are decomposed in blocks as in Fig. @]

In the following we give delay and jitter bounds for a block
as in Fig. @} Theorem [I] gives the result for dampers without
FIFO constraint when the default mode of header computation
is used (as explained in Section and Theorem [2] when
TE time-stamping is used. In both cases, we capture the effect
of errors and non-ideal clocks. We also illustrate cases where
the errors and non-ideal clocks make a major contribution to
the jitter bound.

Theorem 1. Consider a flow of interest that traverses the
block in Fig. 4| The block contains a sequence of JCSs and

1CS K damper

Ics1 "
Delayupper = . )rreeeeee with
bound §; . bound 8, tolzzazges

Delay upper
I -
' Delay lower-bound < (7T1“ 1!11(1/1) (g, Tger, vigr)

- Delay upper-bound 4—-1—\4 '
Jltter bound )
/

Fig. 4: Structure of a block whose delay and jitter bounds are
computed in Theorem [T}

BDSs and terminates in a damper with tolerances (A", AY).
Assume that the clock of every system has stability bound p,
timing-jitter bound 1 and time-error bound w with respect
to TAI (Section [[II-B). Assume that JCS i has a delay upper
bound §;, which is used for damper header computation, in its
local time. Also, assume that the BDS j has delay lower and
upper bounds 7™ and 7™ and jitter bound I/HTAI, all
in TAI. Then, the delay of a packet from entrance to the exit
of the block, in TAI is upper-bounded by D, low-bounded by
D and has jitter bound V', with

K K’
D= 5+ 7+ AV Ke+7,
j=1 j=1
K K’
D=> 5+ - Al — Ke— ¢,
j=1 j=1
K’ .
V:Zu}‘m +AY + AM 4 2Ke+ 9 + 9,
j=1

where 1) and Y are due to clock non-idealities,

K
1) = min ((p )(AY + 2(5]- +e)+ (K+1)n
j=1
2K + 1)w),
= min - - L —€) (K + 1)
) = ((1 ~A +Z (; ;
2K + l)w). (14)

The bounds are tight, i.e., for any tolerances (A%, AY),
every 0;, any m; Hrar W;{TAI, V;{TAI, there is a system and
two individual executlon traces such that in one of them a
packet experiences a delay of D and in the other one a packet

experiences a delay of D.

The proof is in Appendix
Remark. The second arguments of the min(,) functions in
(T4) capture the impact of clock time error bounds when all
the K +1 clocks (K JCSs and one damper with tolerance) are
different from each other. If some systems share a common
clock, so that there are X < K different clocks in total, the
second argument of the min(,) functions should be replaced
by 2(X + 1w.

Hereafter, we provide an application of Theorem I]to obtain
delay and jitter bounds for the three examples of Section
Then we compare the bounds with the basic bounds obtained



when assuming that clocks are perfect, i.e. by summing the
tolerances of dampers and the jitters of BDSs.

Example 1. Consider Example 1 in Section for a flow
that traverses 6 switches. Assume that the switching fabrics
(as JCSs) have a delay upper-bound of 2 us and the delay
bound at each queuing system (as a JCS) is 250 us. Suppose
that the error e = 50 ns and all the dampers are RCSP with
(AL AY) = (1 s, 2 ns). Assume the propagation delay (as a
BDS) is fixed and equal to 5 ps for all links. Assume first that
the clocks of the switches are not synchronized, i.e. we set the
time-error bound w to oo in (I4). Then, by applying Theorem|]
from source to the output of the first damper, the delay upper-
bound is D = 257.13 pus; the delay jitter is V = 1.262 us of
which 200 ns is due to errors and 62 ns is due to non-ideal
clocks. The basic jitter bound is 1.002 ps and is due to the
tolerance of the first damper. We can see that the error and non-
ideal clocks add 262 ns (26%) to the basic jitter bound. The
end-to-end delay and jitter bounds are computed by summing
up the delay and jitter bounds from the output of one damper to
the output of the next downstream damper until the destination;
this gives an end-to-end delay upper-bound of 1.799 ms and
end-to-end jitter bound of 8.834 ps. The values remain the
same if we assume next that the clocks of the switches are
synchronized with a time-error bound of 1 us, as is typical in
IEEE TSN systems.

Example 2. Consider Example 2 in Section for a flow
that traverses four access routers to reach the backbone and
traverses four other access routers to reach to the destination.
Assume that 1) the queuing delay at source has a delay upper-
bound of 100 ps and the jitter bound of 80 us, 2) the delay
upper-bound at the output queuing and packet forwarding
of each access router are 500 pus and 5 ps and the output
queuing has jitter of 100 us, 3) the backbone network has
a delay upper-bound of 30 ms and jitter bound of 1 ms, 4)
the propagation delay is 10 us, 5) the error € = 50 ns and
6) all dampers are RCSP with (A AY) = (1 ps,2 ns).
Then, by using Theorem [I] the end-to-end delay upper-bound
is Dege = 34.211 ms; delay jitter is Vipe = 1.190 ms of
which 1.5 us is due to the errors and 800 ns is due to non-
ideal clocks. The basic jitter bound is 1.188 ms that is due
to the tolerance of the dampers, as well as the BDSs, i.e., the
backbone network, the source output queuing and the output
queuing of the last access router (before the destination). We
can see that here the effect of the errors and non-ideal clocks
is negligible due to the jitter of the BDSs captured by the basic
jitter bound.

Example 3. Consider Example 3 in Section for a flow
that traverses four access routers to reach the backbone and
traverses four other access routers to reach to the destination.
Also, consider the same numerical assumptions as the previous
example. We want to remove jitter of the backbone network
using time stamping at the upstream PE router. Assume that
the PE routers are synchronized with error bound of 1 us;
hence the error damper header computation at the downstream
PE router of the backbone network is bounded by 2.05 us
(the error at the other JCSs is bounded by 50 ns). Then, by
using Theoreml the end-to-end delay upper-bound is Do =
34.216 ms; delay jitter is Vege = 21.74 ps of which 5.8 us

TABLE I: Minimum values of the sum of delay bounds for the
JCSs within a block such that clock synchronization improves
the delay and jitter bounds in Theorem

Synchronization | Time-error bound | Minimum value of
method () POREY
White Rabbit 100ns 3.96ms
gPTP lus 39.96ms
NTP 100ms 3.99s

is due to the errors and 6.92 us is due to non-ideal clocks.
Comparing to the previous example, the basic jitter bound
is reduced to 9.02 us as the jitter of the backbone network,
queuing at source and the queuing at the last access router are
removed. We can see that the errors and clock non-idealities
add 12.72 us (141%) to the basic jitter bound.

We see from these examples that, when the remaining end-
to-end delay-jitter is still large after applying dampers (ms
or more, Example 2) then the timing errors and clock non-
idealities do not play a significant role and can be ignored. In
contrast, for very small residual delay-jitter (Examples 1 and 2,
10 ps or less), ignoring timing errors and clock non-idealities
can lead to significant under-estimation.

Remark. In Example 1, we see that the delay-jitter bound is
not affected by the time-error bound, i.e., here, time synchro-
nization does not improve the performance of dampers. We can
easily analyze when this is the case, by comparing the terms in
the min(.) functions in (I4). We find that time synchronization
does not improve the performance of dampers if and only if

Z

It follows that if Z 105 > pf (2w —n), the time error
bound affects the delay and jitter bounds of Theorem [T} i.e., it
is the relation between the delay (not delay-jitter) bound and
the time-error bound that matters (see Table [I).

TSN networks are typically synchronized with gPTP (w =
1 ps) [32L Section B.3]. Three main delay sensitive classes
are Control-Data Traffic (CDT), class A for audio traffic and
class B for video traffic. According to TSN documents [6],
[12], [38], the end-to-end delay requirement for CDT, classes
A and B are respectively 100 ps in 5 hops, 2 ms and 50 ms in
7 hops. According to Table [I, the gPTP synchronization does
not impact the obtained delay bound using Theorem [2|for CDT
and class A. For class B, if we consider that for each block
the sum of JCS delay bounds is less than 39.96 ms, similarly
the gPTP synchronization does not play a role. This implies
when all switches and the destinations in a TSN network
implement dampers with tolerances and the source performs
time stamping (as a JCS), then without gPTP synchronization
the same performance is achieved.

K 1
+ Ke.

n) — AV — (15)

In order to provide delay and delay-jitter guarantees to time-
sensitive flows, it is often required to bound the burstiness
of flows inside the network, which is typically larger than at
the source. Finding such bounds may be difficult, and worst-
case bounds may be large when there are cyclic dependencies



[39]. Here, dampers can help a lot, as shown by the following
Corollary, which comes by direct application of the jitter
bound in Theorem [I] and 18, Lemma 1].

Corollary 1. Consider Fig. |4 Suppose that a flow has oAt
as arrival curve at the entrance of the block. Then an arrival
curve at the output of the block, in TAI is given by a?fTAI (t) =
aMTAL (t + V) where V is the jitter bound of the block defined

in Theorem [I]

Example. In Example 1 of Section [[II-A] suppose that the
flow has leaky bucket arrival curve with rate 16 Mbps, in
TAI, and burstiness 10 KBytes at source. We computed that
the jitter bound is 1.262 us from source the output of the first
damper. Then the arrival curve at the output of the first damper
has the same rate and the burstiness is increased by 3 Bytes.
Without damper, the burstiness increase would be 515 Bytes:
we see that the burstiness increase due to multiplexing is
almost entirely removed.

Remark. The arrival curve constraint at source may be avail-
able in its local time rather than in TAIL. Then, we can apply
(@), to obtain an arrival curve in TAI and then use the result
of Corollary [1]

When dampers use TE time-stamping for damper header
computation rather than the default method, the delay and
jitter bounds computation with TE time-stamping are slightly
different than in Theorem [I] A JCS is affected only when
the upstream damper uses TE time-stamping (otherwise, the
bounds are the same). The next theorem gives end-to-end delay
and jitter bounds when DHU unit uses TE time-stamping.

\ \ \
dampe damper\ | damper\;

s |, with IS | with § Jcs Jcs with
1 olerances 2 olerances 3 N tolerances,
X (A%, A7)/ (8%, 89 X (8%, AQV
" ;

v ~
The same clock The same clock

Fig. 5: The notations used in Theorem

Theorem 2. Consider Fig. [5 where a sequence of N blocks
are concatenated and TE time-stamping is used for damper
header computation. Assume that clocks follow the description
in Section and damper with tolerances at block v (i =
1,...,N — 1) and JCS i + 1 operate with the same clock.
Assume that there are M JCSs in total. Let us denote the the
sum of the delay bounds of the JCSs as 0e20 and the sum of
delay lower and upper bounds and jitter bound of the BDSs
aS Moo, Te2e ANd Vege respectively. Then,

N
Drg = 0e2e + Te2e + Z A}J + Me+ Urg,
j=1
N-1
Diyp =0z + Tege + Y A) — AR — Me — Uy,
j=1

VIE = Veze + AN + AK + 2Me + Vg + Urp,  (16)

where U and Ui are the errors due to non-ideal clocks:

N
g — min ((p —1)(Feze + > AV + Me) + (M + N)y
=1

L2(M + N)w),

N-1
1
Wy = min ((1 — )2 = A%+ 37 AV 4 Me)
=1

(M + N)y "
+I L2+ ) )

The proof is available in Appendix

Example. Let us redo the end-to-end delay and jitter bounds
computation for the three examples of Section using
Theorem [2] and compare them with the ones obtained with
Theorem [I] Let us consider the same assumptions made when
applying Theorem [T We can see that the delay upper-bounds
obtained by Theorem [2] are the same as the ones computed
after Theorem however, the end-to-end jitter is reduced.
Using Theorem [2| the end-to-end jitter bound for Example
1 is Vgx1 = 2.834 us, Example 2 is Vgyo = 1.183 ms,
Example 3 is Vixs = 13.74 ps. The reason for jitter bound
reduction by Theorem [2]is the elimination of the jitter imposed
by the tolerance of all the intermediate dampers by the next
downstream dampers. In examples 1 and 3, the jitter bounds
are considerably reduced, by 68% and 36%; however, this is
not the case for Example 2 as the main sources of jitter are
the BDSs. Furthermore, the jitter imposed by the errors and
the non-ideal clocks incorporate 65% and 92% of the the end-
to-end jitter bounds computed for examples 1 and 3, which
are respectively 2.8 and 13.74 times the basic jitter bounds.

a7)

VI. PACKET REORDERING IN DAMPERS WITHOUT FIFO
CONSTRAINTS

In this Section we show that dampers without FIFO con-
straint can cause packet misordering, and we quantify the
corresponding reordering metrics.

Obviously, a damper modifies packet order if the sequence
of theoretical eligibility times is not monotonic. Since the
theoretical eligibility time is equal to the arrival time at the
JCS plus a constant, this may occur only if the packet order at
the entrance to the damper is not the same as at the entrance
to the JCS, i.e. this requires the JCS to be non FIFO. But, as
we show next, this may occur even if the JCS is FIFO, due
to timing inaccuracies.

RGCQ and RCSP are two instances of dampers with tol-
erance; by design, they avoid packet reordering due to the
tolerances by enforcing FIFO behavior after computation of
theoretical eligibility times. However, as we show next, packet
reordering may still occur within RGCQ and RCSP due to the
errors of damper header computation and non-ideal clocks.

Re-ordering example with RGCQ. Consider Fig. [6| where
the damper is RGCQ with tolerances (A", AY) and clocks
are not synchronized. Assume that the JCS represents a FIFO
queue connected to a transmission line with a fixed rate and
the BDS has zero jitter and represents constant propagation
delay (similar to the first hop in Example 1 of Section [[IT-A).
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Fig. 6: Packet reordering scenario when two packets enter
back-to-back to a JCS.

Suppose that two packets 1 and 2 enter the JCS at the same
time while 1 is prior to 2. Then packet 1 leaves before packet
2. The damper headers in the packets are:

Hy=0—7",

Hy =6 — 7% — 7% = Hy — 7%, (18)

where %Z'lo is the inferred transmission times of packets i €

{1,2} measured with Hy. Then, the interspacing of the two
packet at the output of the JCS is:

Whe —whe = 7o, (19)

where 7,1 is the actual transmission time of packet 2 and
WHo is the departure time of packet i € {1,2} from the JCS.
Both packets experience the same delay in the BDS. Therefore,
the interspacing between the two packets at the entrance of

RGCQ when seen with clock H; is:
Q= QI =t =7+ (3t —7f), 0)

where QZ’“ is the arrival time of packet ¢ € {1,2} to RGCQ.
Then, by and (3), the difference between the theoretical
eligibility times of packets 2 and 1 is:

B - Eff = Q" - Q" + Hy — Hy

= (TQHO — 712%0) + (7'2%1 — TzHO) .
The difference between the theoretical eligibility times is the
sum of the error between actual and inferred transmission time
and the measurement difference of packet 2 transmission time
seen from clocks H; and #Hy. Therefore, if it happens that
clock H; is faster than Hy during the transmi§sion tiNme of
packet 2 from the JCS, then 75t' < 77°, hence F3'' — BTt <
0, i.e. packet 2 has smaller theoretical eligible time than

packet 1. Then, by implementation of RGCQ discussed in
Section [[V] packet 2 leaves RGCQ before packet 1.

Remark. In this scenario, reordering occurs because of the
difference of speed between the two clocks Hy and H; at the
microscopic scale and the error in inferring the transmission
time. The earliness of a packet written in the header is
measured using the local clock Hy while the delay imposed to
the packet is measured in the RGCQ using the local clock H;.
Even if both systems are time synchronized, there still remains
a small difference in the time measurements performed by the
two clocks. Over the transmission time of a packet, there is
equal chance that one clocks ticks slightly faster than the other,
i.e. there is 50% chance that the change of order described in
this scenario occurs.
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Fig. 7: A scenario that two packets become back-to-back after
an RCSP and reordering occurs in the downstream RCSP.

Re-ordering example with RCSP. Consider Fig. [7| where
the dampers are RCSP. Assume that the first JCS represents
a router, the second JCS is a FIFO queue connected to a
transmission line with a fixed rate and the BDS has zero jitter
and represents a constant propagation delay; this resembles the
first and second access routers in Example 2 of Section
Now, focus on the first JCS and the first RCSP. Suppose
two packets 1 and 2 enter the JCS with interspacing 77¢TA1,
measured in TAI (e.g. transmission time of packet 2 from
source, when packets are sent back-to-back from source), i.e.,

(22)

Hrar

A;'[TAI _ A?TAI =T

Let s denote the delay difference of two packets from entrance
of the JCS to the theoretical eligibility time of the RCSP in
TAL i.e.,

HHTAI A (E‘Z'[TAI _ A?TAI) _ (E;'lTAI o A;'lTAI) . (23)
KkTALL s less than the jitter bound o eorem |1 when =
H is 1 h hj'ib d of Th 1| when AL
AY = 0; ["121|< VO = ) + 1) + 2¢. Then by (22), we have:

Ez—lTAI _ E;{TAI — pHrar H’HTAI’

(24)
which shows the interspacing between the theoretical eligibil-
ity times of two packets at the RCSP in TAIL Observing this
interspacing with Ho, we obtain

Ez'[z _ EN*;'Q — THTAI + K'HTAI +7, (25)

where v is the difference in the measurement of the inter-
spacing between Hrar and Hs, bounded by . The actual
eligibility times of the packets from RCSP are obtained by
getting the floor of the theoretical eligibility times divided by
A (Section [IV). Hence, if 77rar 4 gMrar 4y < AL the
two packets may have the same actual eligibility times (leave
RCSP back-to-back). The probability of this phenomenon is

THTA | HrA v ) THrar
AL T ALY

which implies that, the smaller the interspacing of the two
packets when entering the JCS, the larger is the probability
of having the two packets with the same actual eligibility
time and leave the RSCP back-to-back. When two packets
are back-to-back from one RCSP, then similar to scenario 1,
there is 50% chance of reordering for the two packets at the
output of the next downstream RCSP. Due to the independence
of the two events (being back-to-back at the output of the
RCSP and reordering at next downstream RCSP), the chance
of reordering is 0.5 (1 — 77trar /AL,

One approach to tackle the reordering issue of dampers with
tolerance is to place re-sequencing buffers after the dampers

P [backToBack] =1 —




to correct the reordering that they cause. With this approach,
it is crucial to find proper time-out value and size for the re-
sequencing buffers. As shown in [[18]], two reordering metrics,
namely reordering late-time offset (RTO) and reordering byte
offset (RBO) respectively give the time-out value and size of
a re-sequencing buffer. We obtain these metrics for dampers
as a direct result of [[18]:

Corollary 2. Consider Fig.l|and a flow that has arrival curve
™At at the entrance of the block. Then, the RTO for the flow
from the entrance of the block to the output of the damper with

tolerance, measured in TAI, is \™ and the corresponding
RBO is (:
TAI Hrar) ¥ iny] F
NTAT = [V — (a¥ra)* apmim) | (26)
¢ =Mt (V) — L™, (27)

where V' is the jitter bound of the block, computed in Theorem
and L™™ js the minimum packet length of the flow.

Example. Consider Example 1 of Section with the same
assumptions made after Theorem Suppose that a flow
has leaky-bucket arrival curve with rate 16 Mbps, in TAI,
burstiness 10 KBytes at source and minimum packet length
100 Bytes. We computed that the jitter bound is 1.262 s
from the source to the output of the first damper. Then the
RTO (time-out value) is 1.262 us and the RBO (required buffer
size) is 10003 Bytes.

Another approach to tackle reordering is to use dampers
with FIFO constraint, as discussed in Section [[V|and analyzed
in the next section.

VII. ANALYSIS OF DAMPERS WITH FIFO CONSTRAINTS

As mentioned earlier, one way to avoid packet reorder-
ing within dampers with tolerance is to replace them with
dampers with FIFO constraint, namely, re-sequencing and
HoL dampers. The goal of this section is to provide delay
and jitter bounds when dampers with FIFO constraint are
used. In this context, “FIFO” and “re-sequencing” are with
respect to the aggregate of all packets that use a damper of
interest. When all the BDSs and JCSs within a flow path
are FIFO, using re-sequencing or HoL dampers, in contrary
to dampers with tolerances, can provide end-to-end in-order
packet delivery. However, this might impact the delay and
jitter bounds computed in Theorem [I] To this end, we capture
the impact of using re-sequencing or HoL dampers instead of
dampers with tolerances in terms of delay and jitter bounds in
Theorem [3] and Theorem ] when all systems are FIFO. Then,
we see in Theorem [5] and Theorem [f] that the presence of a
non-FIFO system (BDS or JCS) in the flow path considerably
worsens the delay and jitter bounds obtained when all systems
are FIFO. This phenomenon does not occur with dampers
without FIFO constraint because the results in Section [V] hold
whether the JCSs and BDSs are FIFO or not.

Theorem 3. Consider the block of systems in Fig. |8|where all
the JCSs and BDSs are FIFO and the damper is an instance
of re-sequencing dampers with tolerances (AL, AU). Assume
that the clocks follow the description in Section Then,

re-sequencing or
' head-of-line
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Fig. 8: The notations used in Theorem |3[ and Theorem

the delay and jitter bounds of the block, in TAIL is the same
as the bounds in Theorem [l

The proof is in Appendix It consists in two steps.
First, we use an abstraction of a re-sequencing damper with
tolerances (A", AY) as a damper with tolerances (A, AY)
followed by a re-sequencing buffer that preserve the order of
packet at their entrance to the damper with tolerances. Second,
by the re-sequencing-for-free property of the re-sequencing
buffers [18]], we obtain the bounds.

Remark. We have seen in the previous section that even if
all BDSs and JCSs are FIFO in a flow path, dampers with
tolerance may cause packet reordering due to the tolerances,
non-ideal clocks and errors in packet header computation. The-
orem (3| indicates that in such a case, placing a re-sequencing
damper avoids packet reordering with the same delay and jitter
bounds as if dampers with tolerances are used.

Theorem 4. Consider the block of systems in Fig. S| where
all the JCSs and BDSs are FIFO and the damper is an in-
stance of head-of-line dampers with tolerances (A", AY) and
processing-time bounds (™", $™2¥). Assume that the clocks
follow the description in Section Then if ¢ =0, the
delay and jitter bounds are the same as the bounds in Theorem
[1] Otherwise, for a flow with per-packet arrival curve « at the
entrance of the block,

1) the delay upper-bound is increased by 0,

2) the delay lower-bound is increased by ¢™7",

3) the jitter bound is increased by 6 — ¢™?,
where 0 is a delay upper-bound of a single-server FIFO queue
with maximum processing time of ¢™®*, computed as

6 = max {k¢"™™ —at(k) + V}, (28)

where V is the jitter bound computed in Theorem [I| and
at(k) = inf {t > 0la(t) > k}.

The proof is in Appendix The proof consists in two
steps. First, we prove that an HoL damper is equivalent
to re-sequencing damper with tolerances (A, AY) followed
by a single-server FIFO queue with service times within
(¢p™, pM2X) - Second, using the bounds of Theorem [3| and
obtaining delay and jitter bounds on the single-server queue,
the theorem is proven.

Remark. HoL dampers, in contrary to re-sequencing dampers,
imposes some queuing delay, captured by 6 in (28). The
queuing delay is maximized for the last packet of a packet
sequence when all become eligible at the same time; then
since the HoL damper examines only the packet at the head
of the queue, the last packet of the sequence is delayed as
much as the processing delay of all the preceding packets.
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So far we provide delay and jitter bounds when all the
systems are FIFO; however, the FIFO condition might not
be always met for all systems such as multi-stage switching
fabrics, multi-path routing of packets or packet duplication
[40]-[42]. Hence, in the following theorems we capture the
impact of non-FIFO behavior of systems on the delay and
jitter bounds when re-sequencing and HoLL dampers are used.

Theorem 5. Consider Fig. [9 where system e (a BDS or a
JCS) is the last non-FIFO system in the block and the damper
is an instance of re-sequencing damper. Let us call J as the
jitter from JCS 1 to system e (included), in TAL Then, the
delay upper-bound and jitter bound of the block, in TAI, are
increased by J comparing to the bounds in Theorem

The bounds are tight, i.e., for any packet that experiences
the delay equal to D, there is system and an execution trace
that another packet experiences a delay equal to D + J.

The proof is in Appendix [A-F The proof has two parts.
First, we show that delay upper-bound is increased by .J
while the delay lower-bound remains unchanged. Second, we
provide a scenario where two packets with interspacing J
enter the block and leave the element e back-to-back while
their order is changed. We show that when the second packet
experiences a delay D, the first packet experiences a delay of
D+ J and the second packet leaves the re-sequencing damper
before the first packet.

Theorem 6. Consider Fig.[9where system e (a BDS or a JCS)
is the last non-FIFO system in the block and the damper is an
instance of HoL damper. Let us call J as the jitter from JCS 1
to system e (included), in TAIL Then, comparing to Theorem [4)
the delay upper-bound and jitter bound of the block, in TAI,
are increased by J if ¢™** = 0, and are increased by 2J if
P > 0.

The proof is in Appendix The proof consists in two
steps. First, similarly to the proof of Theorem 3| we abstract an
HoL damper as a re-sequencing damper followed by a single-
server FIFO queue. Second, by summing the bounds obtained
in Theorem E] and the bounds on the FIFO queue, the statement
is proven. In the case ¢™** > 0, the bounds are increased
once by J within the re-sequencing damper and once within
the FIFO queue as a result of propagated arrival curve at the
output of the re-sequencing damper.

Remark. Similarly to Corollary |1} propagated arrival curve of
a flow, with arrival curve a7*T1(¢) at the entrance of a block,
is aTa1(¢4V/) at the output of re-sequencing or HoL damper,
where V is the jitter of the block computed by applying the
corresponding theorem.

Remark. Theorem [3] and Theorem [6] show that when there is a
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non-FIFO system in a block, placement of a damper with FIFO
constraint is counterproductive. First, comparing to placement
of dampers with tolerances, the jitter is increased; in result, it
leads to an increase in the burstiness of the propagated arrival
curve. Second, the damper with FIFO constraint preserves the
wrong order of the packets, which occurred within the non-
FIFO system.

VIII. NUMERICAL EVALUATION

(FCM, )J(LCM, ) RCM, ][ W4, J—f SWs,
- H_I_J\

(cm2cA)(cMm2CB)(sM2cA ) (sM2CB)

End system  Switch

—
Physical link

Fig. 10: The Orion crew exploration vehicle network.

We illustrate our theoretical results on the Orion crew
exploration vehicle network, as described in [43] and depicted
in Fig. [I0] taken from [39]. For the delay and jitter analysis,
we used Fixed-Point TFA [39]], [44] as there are cyclic
dependencies. The device clocks are not synchronized. The
link rates are 1 Gbps. The output ports use a non-preemptive
TSN scheduler with Credit-based Shapers (CBSs) with per-
class FIFO queuing [45], [46[]; from highest to lowest priority,
the classes are CDT, A, B, and Best Effort (BE). The CBSs
are used separately for classes A and B. The CBS parameters
idleslopes are set to 50% and 25% of the link rate respectively
for classes A and B [46]. In each switch, the switching fabric
has a delay between 0.5 us to 2 us [47]. The CDT traffic
has a leaky-bucket arrival curve with rate 6.4 kilobytes per
second and burst 64 bytes. The maximum packet length of
classes B and BE is 1500 bytes. We focus on class A. Using
the results in [45]], a rate-latency service curve offered to class
A is B(t) = 62.49¢6[t — to]™ bytes with to = 12.5 pus.

Class A contains 40 flows with constant packet size
147 bytes, which transmit 10 packets every 8 ms. The flows
traverse between 2 to 9 hops. We assume all switching
fabrics and output queuing systems implement DHU unit and
therefore are JCSs; the propagation delays are considered as
BDSs with zero jitter. We examine the case where no damper is
placed and the case where dampers are placed at every switch
and the destinations. For the choice of dampers, we considered
individually the full deployment of RCSP (AY = 1 pus,
AY = 2 ns), RGCQ (A" = 2 ns, AY = 1 ps) with TE
time-stamping, FOPLEQ (A" = 1 us, AV = 2 ns) and a head-
of-line damper (¢™* = 0, p™* =5 ns, A¥ = AV = 2 ns).

Fig. shows the end-to-end jitter bounds of the flows
for full deployment of RCSP and RGCQ with TE time-
stamping. For each of the cases, the basic jitter computation
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Fig. 11: The end-to-end jitter bounds for RCSP and RGCQ
with TE time-stamping using basic jitter computation and
using theorems [T] and [2}

only considers the jitter imposed by the tolerances of the
dampers and ignore the impact of non-ideal clocks and errors
in the computation of damper header. Fig. [T1] also shows the
true jitter bound for the case of RCSP, using Theorem (1} and
for the case of RGCQ with TE time-stamping using Theorem
[2l We see that non-ideal clocks and errors can increase jitter
by 11% in the case of RCSP and 106% in the case of RGCQ
with TE time-stamping. We also see that the TE time-stamping
used with RGCQ can significantly reduce the end-to-end jitter
comparing to the default time-stamping used with RCSP.

Fig. shows the end-to-end delay and jitter bounds of
the flows when no damper is used and when there is a full
deployment as above. All switching fabrics are FIFO. We
see that without damper, the delay upper-bound is smaller
compared to full damper deployments; this is due to the line-
shaping effect when computing the queuing delay bounds in
the absence of dampers. However, as expected, the full de-
ployment of dampers significantly reduces the jitter bounds. In
this computation, the HoL damper provides quasi similar jitter
bound as RGCQ with TE time-stamping and FOPLEQ gives
the exact same jitter bound as RCSP as seen in Theorem

Fig. [13] shows the end-to-end jitter bounds of the flows for
FOPLEQ and HoL damper considering the switching fabrics
are FIFO and are not FIFO. The figure shows that with
FOPLEQ the jitter is significantly increased that is due to the
jitter imposed by the output queuing, as seen in Theorem [3]
It also shows that jitter bounds are worse in the case of HoL
damper as discussed in Theorem [6]

IX. CONCLUSION

We have presented a theory to compute delay and jitter
bounds in a network that implements dampers with non-
ideal clocks. We have shown that dampers without FIFO
constraint can cause packet reordering even if all network
elements are FIFO; re-sequencing dampers and head-of-line
dampers avoid the problem; the former come with no jitter or
delay penalty, and the latter with a small, quantified penalty.
However, when a flow path contains non-FIFO elements, re-
sequencing dampers and head-of-line dampers do not perform
well.
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APPENDIX A
PROOFS

A. Lemmas for Section [[V]

Lemma 1. Consider a non-decreasing sequence I =
{I,...,I,} and a sequence ¢ = {¢1,...,Pn}. Assume the
sequence O = {O1,...,0,} is defined by

Oy =1L+ ¢1, O, =max (Ina On—l) + Pn.
Then a closed-form formula for O is:

O, :g}gx{[m—&— Z@}
1=m

Proof. We prove by induction. Base case n = 1.
O1 =1 + ¢1, (29)

as required by the lemma.

Induction step. We assume that the lemma holds for all
1 < n. Then for 7 = n — 1, by the closed-form formula we
have:

(30)

n—1
On-1 = 1o, {fm > ‘“} |
Then, using the recursive definition of O,,:

On = max (Ina Onfl) + ¢n

n—1
= max (In + O, 7732%}51 {Im + Z ¢i} + ¢n>

= max (In + ¢"’m12%§1 {Im + Z ¢z}>
= g}gg{lm + Z@} .
=m

€2y

O

Lemma 2. Let a, ™" < 2™ gnd ™" < ™2 pe five fixed
real numbers. For any z € R, if

2™ 4 max(a, y™") < z < 2™ 4 max(a, ™), (32)
then there exists some x,y € R such that

z = x + max(a,y), (33)

x € [z ™), (34)

y € [y™ g™ (35)

Comversely, if there exists x,y € R such thatr (33)-@3) hold,
then z satisfies (32)).

Proof. 1) Let D = [xp™in; gmax] x [ymin;ymax] and f the
mapping D — R defined by f(z,y) = z + max(a,y). f is
continuous and D is compact and connected, therefore f(D) is
compact and connected. The compact and connected subsets of
R are the closed, bounded intervals, therefore f(D) = [m; M]

for some m, M € R. Necessarily, m is the minimum of f over
D and M is the maximum of f over D.
Now for every (z,y) € D:

Fla™® g™ < fla,y) < f@™,y™).  (36)

It follows that the minimum of f over D is f(z™", y™in), i.e.
m = f(z™®, ™). Similarly, M = f(a™%, y™%). Now let
z € R that satisfies (32), i.e. z € [m; M| = f(D). Thus, there
exists some (x,y) € D such that z = f(z,y), i.e. there exists

z,y € R such that (33)-(33) hold.
2) Conversely, if there exists z,y € R such that (33)-(33)
hold, then z = f(z,y) and thus m < z < M, i.e. (32) holds.
O

B. Proof of Theorem ]

Let us define d; as the delay of JCS ¢ (i = 1,..., K), 7;
as the delay of BDS j (j = 1,..., K’) and t as the delay of
the damper. Assume that JCS ¢ is operating with clock #; and

the damper is operating with clock Hqamper- Then, the delay
of the block, in TAI, is:

K K’ K
qHrar — Z d;HTAI + Zﬂ.HTAI 4 ¢Hrar — Z dH
J )
i=1 j=1 i=1
K/
Y o e g, (37)
j=1
where v = Zszl dZ‘LTAI _ dZ‘LI) + (tHTAI _ tHdalnper). By

(3) and (@), the delay of a packet with damper header H inside
the damper is

H _ AL < {Haamper < H+ AU (38)

Moreover, the damper header is incremented when the packet
is passing by a JCS. Therefore, by and accounting for the
errors in the computation of damper header, we have:

K K K
H=Y (6 —d'+e)=> 6—> d'+Ke (39
i=1 i=1 i=1
where e is defined in Section [I[V-C2] Using (39) and the upper
bound in (38), gives:

K K’ K K
e sy e (Lo )
i=1 Jj=1 i=1 =1

K K’
+AY 4y =) "6+ ) w4 AU+ Ke + .
i=1 j=1

(40)

By Lemma [3| v < 1; also |e|< ¢; furthermore, the delay of
the packet inside the BDS j is less than its worst-case delay,

; Hrar .
Le., T ot Therefore:

K K’
A <N 5+ Y w4+ AY 4 Ke + 4
i=1 j=1



Similarly, using the lower bound in (38) and the value of H
in (39), we have:

K K’ K K
JHrar > Z d;H7 + Z ,n.;'[TAI + (Z 5 — Z dZ'[l + Ke)
=1 j=1 =1 =1

K K’
—AM by =)0+ ) ma - Al 4 Ke+ .
i=1 =1

(41)

By Lemma , v > —1; also, |e|< e; furthermore, the delay
of the packet inside the BDS j is less than its best-case delay,

Hrar
ie., 7’ J best: Therefore:

H H
e >Zé +stézz—

By subtracting the lower and upper bounds in (1) and @2)),
we obtain a jitter bound for the block:

K/
V= Z (ﬂ.HTAI
j=1

—Ke—%i.

j,worst W?l;;?t) + AU + AL +2Ke+ @

KI
+p=> v 4 AU+ AV L oKe+ )+, (42)
j=1
which proves the jitter bound. Note that w;";ggst ﬂ;{geASIt <

HTAI
I/]

hMoreover since WHTngSt < FHTAI and wj'f(f;t > WHTAI we
ave:
K K'
A <N 5+ Y w4 AV 4 Ke+ =D,
i=1 j=1
K K’
AN >N 54y wla AN Ke—¢p=D. (43)
i=1 j=1

Proof of tightness. Consider a packet that enters JCS 1. We
show scenarios where the packet reaches the delay bound in
the statement of the theorem; since v can take different values
due to the min(.) function, we give two different scenarios.

First scenario. Assume that the clocks H;, i =1, ..., K, and
Hdamper are adversarial and faster than TAI such that for any
delay measurement d we have:

dHmar = pdi 4 =1, ..
d'HTAI _ dedamper +.

K
(44)

This scenario assumes that for any clock H;, pd™ +n <
d™i + 2w and pdMasmeer 4 g < @Haamper 4 2y,

Let us define H; as the damper header that is computed in
JCS i. Then, let the packet experience a delay dZ{ < §; in
JCS i in its local time; then the damper header written for this
packet is

Hy =6, —d" +e,

Hi=H; 1 +6—d'+e i=2.,K

assuming adversarial condition in the damper header compu-
tation error. The packet experiences a delay equal to WHTAI in

BDS j. Finally, the damper computes the eligibility time and
releases it at the latest; i.e., the packet experiences a delay

K K
= 6u— > dil*+ Ke+ AV,
u=1 u=1

Therefore, for the damper, the delay of the packet in TAI,

using (@4), is:
K K
t'HTAI =p <Z 6u — Z dy“ + Ke + AU> +n. 45)
u=1

t?‘[damper — HK + AU

u=1

Also, for JCS i, the delay of the packet in TAI is:
e = pdlt 4+ . (46)

Now, to compute the per-hop delay of the packet, we sum up
all the delays in TAI:

K K’ K
d;’i’l;)AI Z dyTAI + ZW?TAI 4 ¢HTar — Z (deL{i + ,r])
= Jj=1 u=1
+Z7r”T“ +p (Z(S — Zd”u +K6+AU> +n
j=1 u=1
K’
Su+ Ke+ AV) 4> 74 (K +1)p

=1

K’

Z AT+ AY + Ke+ 9,

K
u=1
K
=> 4. (47)
which is equal to the delay bound in the statement of the
theorem.

Second scenario. Assume that the clocks H;, ¢ = 1, ..., K,
and Hgamper are adversarial and faster than TAI such that for
any delay measurement d we have:

ditrmar — gt 4 9w, i=1,.... K
d?-lTAI — dealnper 4 2w. (48)

This scenario assumes that for any clock H;, pd™ +n >
dMi +2w and pd*tdamper gy > dMaamper 4 20 Then following
the same steps as the previous scenario, we have:

K K
A =3 "5, = > " dit + Ke+ AY 4 2w,
u=1 u=1
di™ = dl' + 2w, Vie{l,...,K}. (49)
This gives:
K
thO’ll“)AI Z dHTAI + Z =Hrar + t?—LTAI _ Z (dl'll + 20))
u=1
K
+Zﬂﬁ“ +Z§u —deju + Ke+ AY + 20
j=1 = u=1
K/
= Zé +Ke+ AV 74 oK + 1w
u=1 j=1
K K’
= but > T4 AV 4 Ke + 79, (50)
u= Jj=1



which is equal to the delay bound in the statement of the
theorem. The tightness for delay lower bound happens when
the clocks H;, i = 1,..., K, and Hgamper are adversarial and
slower than TAI. Similarly to the tightness proof of delay
upper-bound, two tightness scenarios are given for the two
possible values of . For the first scenario, for any delay
measurement d, we have:

dHrar — l (dH7 — 77) , i=1,..., K,
p
dMrar — % (d%damper — 77) , (51
and for the second scenario, we have:
dHrar — gHi _ 2w, 1=1,..., K,
dHrar — gHaamper _ 9, (52)

Considering the damper releases the packets at the earliest, the
rest of the proof follows the same steps as the tightness proof
of delay upper-bound.

Lemma 3. —¢ < v < 4, where ¢ and 1 are defined in (T4):
Proof. By definition of v, we have:

K
v = Z (d;rlTAI _ d;{j) + (tHTAI _ tHdamper) ) (53)
j=1

First we prove the upper bound. By the following holds
for any JCS j:

H Hj H;
s M < (p—1)dY 4,
A — dl < 2w, (54)
Using the value of H in (39) and the upper bound in (38),

we have tHdamper < Z;il ((5j — dj-{j + e) + AY. Hence,
similarly to the previous equation:

K
$HAL _ Haamper < (p— 1) (AU +)° (5j —dY e) ) +,
j=1

tHTAI _ tHdaInper < 2w. (55)

We first consider the case that the synchronization inequality

is dominating for all systems (i.e., the second line of (54) and
(33)). Hence, we have:
K

v < Z2w+2w =2(K + 1)w.
j=1

(56)

Second, we consider the case that the free-running mode is
dominating for all systems (i.e., in the first line of and
(33)). Then, we have:

K
v SZ ((p— 1)d}" +77) +(p—1)AY

K
Y (p—1) Z(aj—djfwe) +n
j=1
K
=(p-D[AY+D (0i+e) | +(E+1)n. (67
j=1

Finally, by (56) and (57), v < 1.
Next, we prove the lower bound. Similarly, by the follow-
ing holds for any JCS j:

H, 1 Hj n
p p

—dY > 2w, (58)

Using the value of H in (39) and the upper bound in (38), we
have t*damper > Z;il (5j —db ) — AL Hence:

V

Hrar _
dj

Hrar
dj

;€

K
1 .
tHrar — Hlasmer > (1 = Z) (A 43 7(5; - diY — )
p -
J
n

)

P

t'HTAI _ tHdamper > —2w. (59)

We first consider the case that the synchronization inequality
is dominating for all systems (i.e., the second line of (54) and
(33)). Hence, we have:

K
e Z 2w — 2w = —2(K + 1)w. (60)
j=1

Second, we consider the case that the free-running mode is
dominating for all systems (i.e., in the first line of and
(33)). Then, we have:

1 K H. K?’]
— S A
e <1 p);_;J p
—(1—1> —AL+i(6-—dﬂj—e) 1
J J
j=1

P P
K
1 K+1
() (e a) wE
p = p
(61)
Finally, by (60) and (61), v > —%. O

C. Proof of Theorem 2]

Consider a packet that enters block 1 at time A. Let us
denote the theoretical and actual eligibility time of the packet
from the damper of block 7 as E; and E; respectively. Then,
the delay from A to the output of block N, i.e., Ey, is:

dZ‘é’é“AI — E]7\'[1TA1 _ AHTAI — (EZ{TAI _ A’HTAI) 4
N-1 _ B B
Z <EZ‘LTAI _ EZ‘E&AI) + (E]?\'ILTAI _ E%E'Ail) . (62)
1=2

By Theorem (1| and setting the tolerances to zero, we can find
delay and jitter bounds for E;{TAI — A™rar) in TAL For any
term (EZ'[T“ - EZleAI) in the summation, using Lemma ,
we can obtain delay and jitter bound by setting AX = AV =0
(since we are interested to find the delay to the theoretical
eligibilititime at the damper 7). Finally, we can apply again

Lemma (4| to get the bounds for (E;{,LTAI fEﬁfAf). By



summing up the delay and jitter bounds of each term in (62)),
we get the bounds in the statement of the theorem.

Lemma 4. Consider a block i in Fig. [3 that has K; JCSs.
Assume that TE time-stamping is used to compute damper
headers. Let Oy, denote the sum of the delay bounds of
the JCSs in the block, Eggﬁﬂﬁgﬁfl and Vg'fgfl respectively
denote the sum of delay lower and upper bounds and
jitter bound of the BDSs. Then, the delay of a packet from
theoretical eligibility time of damper i — 1, i = 2,..., N,
to the actual eligibility time of damper i, in TAI is upper-
bounded by D;, low-bounded by D, and has jitter bound V;:

= Obt, TN + AL + AV + Kie+ 0,
= So + I + ALy — A — Kie — v,
o LA 1AL e,

D,
D;
Vi

where,

¥,; = min ((p —1) (bi; + APy + AP + Kie) + (K; + 1)n

2K+ 1)w)),

¢; = min ( (1 — ;) (6blk¢ + AiU_l — A% — Kie)

K +1
+( + )7772

(K; + 1)w>. (63)

Proof. The proof follows the same as Theorem [I] and using:

K
H= (6 +AY, —di" +e)+ Y (0, —d) +e)

j=2
K K

= 0= Y d“ + Al +Ke,
j=1 i=1

instead of (39) for damper header computation. Note that here
d;{J is the delay from of the packet from start of time stamping
at JCS j to its departure time. O

(64)

D. Proof of Theorem 3]
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Fig. 14: The notations used in the proof of Theorem

Consider Fig. [T4] where A is the sequence of packet arrival
times at entrance of the block, @ is the sequence of arrivals
to the re-sequencing damper, and F is the sequence of actual
eligibility times at the re-sequencing damper. By definition,
the re-sequencing damper behaves as a damper with tolerances
(AL, AY) followed by a re-sequencing buffer. Denote with C'
the actual eligibility times from the damper with tolerance

and with Z the output times of the re-sequencing buffer; the
equivalence means that £ = Z.

By Theorem [I] the delay from A to C' has lower bound
D, upper bound D and the jitter bound is V. Now, let P and
P’ be the sets of packets seen respectively at A and Q, i.e.,
P’ C P; by defining P’, we only include the packets of P that
arrive to (); therefore, by [18| Theorem 4], the re-sequencing
buffer does not increase the worst-case delay and jitter from
A to C. Hence, the delay and jitter bounds from A to Z are
the same as from A to C, which proves the theorem.

E. Proof of Theorem

"
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Fig. 15: The notations used in the proof of Theorem

Consider Fig. [I5] where A is the sequence of packet arrival
times at JCS 1 (entrance of the block), @ is the sequence of
arrivals to the head-of-line damper, E and E are the sequences
of theoretical and actual eligibility times at the head-of-line
damper. By Lemma [5] the head-of-line damper is equivalent
to a re-sequencing damper followed by a single-server FIFO
queue with service time in range [¢™", ¢™2%]. Denote with
Z the output times of the re-sequencing damper and O as the
output of the single-server FIFO queue; the equivalence means
that £ = O.

By Theorem [3] the delay from A to Z has lower bound D,
upper bound D and the jitter bound is V. Also, similarly to
Corollary [1} arrival curve at Z is yegeq(t) = a(t + V).

By Lemma [f] the delay upper-bound of the single-server
FIFO queue is maxpen {k¢™™ — offyoq(k)} for nonzero
processing time, i.e. ¢™** > 0; otherwise the delay upper-
bound is zero. By [ [48], Proposition 7], we obtain ozf.eseq(k) >
at(k) — V. Therefore, the delay is upper-bounded by 6 =
maxgen { k@™ — a*(k) + V'} for nonzero processing time,
ie., oM > 0.

We can see that the delay lower bound is ¢™" as minimum
processing time for a packet. This gives the jitter Vgsq =
6 — @™, By summing the bounds from A to Z and the single-
server FIFO queue, we obtain the bounds in the statement of
the theorem.

Lemma 5. Consider a head-of-line damper shown in Fig. [I5]
Then, this system can be abstracted as a re-sequencing damper
with tolerances (A", AV) followed by a single-server FIFO
queue with service time in range [¢™", ™X],

Proof. We use the notation in Fig. [I5] Let E be the sequence
of actual eligibility times at the head-of-line damper and F
the sequence of theoretical eligibility times. By the discussion



that follows (O) and by Lemma there exist sequences £ and
¢ such that, for every n:

(bn c [¢min7¢max]7
En - AL SETL S En + AU7

E, =max(E,, E,_1) + én. (65)

Let us construct a re-sequencing damper with tolerances
(AL, AY) and sequence of actual eligibility times Z such that

En*ALSEnSEn‘FAUa

Zl = E1, Zn = max {E_)“Zn,l} . (66)

Now consider a single-server FIFO queue with sequence of
service times equal to ¢ and input sequence Z. Then, the
output sequence from the FIFO queue, O, is

O1 =21+ ¢1,0, =max(Op_1,2,) + ¢pn;n > 2. (67)

We now show by induction that O,, = E,, for every n > 1.
This holds for n = 1. Assume that it holds for n — 1. Observe
first that Z,,_1 < O,_1 (because ¢, > 0) and therefore, by
the induction hypothesis,

Zn-1 < Ep_y. (68)
By (67) and again the induction hypothesis:
O, =max(En_1,Z,) + ¢n- (69)
By (66):
O, =max(E,_1,En, Zn_1) + ¢n (70)
=max(Ep_1, E,) + ¢n, (71)
because of (68). It follows from (63) that O,, = E,,. O

Lemma 6. Consider a flow with per-packet arrival curve o

that enters a single-server FIFO queue. Suppose that a head

of line packet n has a processing time ¢, € [q&mi“,(ﬁma"]
Then a delay bound of the flow 0 is:

6= i — k(i) 72

max {ig™™ — o (i)} (72)

Proof. Let us call I, and O,, as arrival and departure times
of packet n. By Lemma [7] we have:

On:g}gﬁ{fm+2¢i}. (73)
We subtract I,, from both sides:
n

= rnrllg}é { Z i — (In - Im)} . (74)

By [18| Section IILE], we have I,, — I, > a*(n —m + 1);
therefore,

m<n |
i=m

On—In<max{z¢i—a¢(n—m+l)}. (75)

Since ¢; < ™

On—Ingmgx{(m—n—i—l)gbmax—ai(n—m—&—l)}
< R - omax |/ —0.
71&8@({@ at(i)} =0 (76)
O

Lemma 7. Consider a single-server FIFO queue. A packet n
arrives at time I, and the service time is ¢,, when it is at the
head of the queue. Then, the departure time of packet n is O,
and computed as:

On:rﬁgz{lm—&-;n(/)i}. (77)

Proof. Since we have for a single-server FIFO queue:
O1=11+¢1, On=max(l,,0n_1)+ Pn, (78)
by Lemma [T] the statement is proven. O

F. Proof of Theorem
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Fig. 16: The notations used in the proof of Theorem

Consider Fig.[T6 where A is used to denote the arrival times
to JCS 1, W the departure times from element e, @) the arrival
times to the damper, E and F respectively the theoretical and
actual eligibility times at the damper. Now for packets m,n :
m < n , since from output of element e to the input of the
damper is FIFO, we have W,,, < W,,. Then, as the jitter from
JCS 1 to element e is bounded by J, we have:

Wn—Ap)— (W, — Ap) < J
thus 4, — A, <J+W,, - W, <J

thus A, > A, — J. (79)
Now by (3)), we have:
En_ALSEn SEn+AUa
Ey=E), E,=max{E, E,1}. (80)

By definition, the re-sequencing damper behaves as a damper
with tolerances (A%, AY) followed by a re-sequencing buffer,
where E is the output of the damper with tolerance and F
is the output of the re-sequencing buffer. Now, let n be fixed
and define packet index u as

u:max{k§n|Ek:1r;1Sa£<{Ej}}. (81)



Then, we have E, — A, = E, — A,,. Combining with
for packets u and n, we obtain:

En - An S Eu - Au, + J (82)

Since E is the output of the damper with tolerance, by
Theorem |1} E, — A, < D; hence E,, — A,, < D + J, which
proves the delay upper bound. By and Theorem [I| we
have:

which proves the delay lower bound for this case. Since the
delay lower-bound is not changed, and the upper-bound is
increased by J, hence the jitter bound is increased by J.

Proof of tightness. The tightness scenario for delay lower-
bound is exactly the same as tightness scenario in Theorem
where a single packet in isolation reaches the delay lower-
bound D.

For the delay upper-bound and jitter bound tightness, con-
sider two packets 1 and 2 as shown in Fig that arrive at
times ¢ and ¢t + J in TAL Assume every local clock (of JCS
or damper) H; is adversarial and faster than TAI such that for
any delay measurement d, we have:

dMTAt = min (de" +n, M + Qw) .

Let us call the worst-case delay, in TAI, from input of JCS 1 to
the output of e, as §. Suppose that packets 1 and 2 experience
delays of § and d — J, in TAI, to leave element e, i.e., W7 =
Wy =t 4 9, and packet 2 arrives just before packet 1. Also,
both experience the same delay from output of element e to
the input of the damper while packet 2 is still prior to packet
1 due to the FIFO assumption. Since packet 1 arrives after
packet 2, it is released after packet 2 becomes eligible (even
if its theoretical eligibility time has passed).

Now, assume packet 2 experiences a delay, in TAI, equal
to D from A to E, ie, By = Ay +D =t + J + D (the
packet that reaches the upper-bound in tightness scenario of
Theorem E]) Therefore, packet 1 is released after packet 2,
ie., By = Ey =t+J+ D. Hence, the delay of packet 1 from
Ato E is:

Ey— A =(t+J+D)-(t)=J+D, (84)

that is equal to the delay upper-bound of the theorem state-
ment.

Now, we verify the assumptions;

1) The jitter from JCS 1 to the output of e is not larger that
J: The delay of packet 1 and packet 2 are respectively ¢ and
0 — J in TAI, and therefore the jitter is .J.

2) The FIFO constraint of the damper is not violated: Packet
2 arrives before packet 1, Q2 < (1, and also leaves before is
E; < Es.

Hence, we showed an execution trace that with packet 2
experiencing a delay of D, packet 1 experiences a delay of
D + J. Since there execution traces where in one, a packet
reaches the lower-bound of Theorem [l| and in another one, a
packet reaches the delay upper-bound of Theorem [1| plus J,
we have that the jitter Theorem [I] is increased by J.
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G. Proof of Theorem [6]

Consider Fig. [I6]where A is used to denote the sequence of
arrival times to JCS 1, W the departure times from element
e, () the arrival times to the damper, F and E respectively
the theoretical and actual eligibility times at the damper. By
Lemma [5] we abstract it as a re-sequencing damper followed
by a single-server FIFO queue. Let Z denote the sequence
of departure times from the re-sequencing damper; then, by

Theorem E], for a packet n, we have:
D<Z,—A,<D+J, (85)

and the jitter from A to Z is V + J. As a result, by [I8]
Lemma 1], an arrival curve at the output of the re-sequencing
damper (input of the single-server FIFO queue) is Qtreseq =
a(t+V +J). Then by Lemma6] for nonzero processing time:

E, -7, < %12151( {k¢max - ai’eseq(k)}
< max _ | —
< max {k¢ at(k)+V+J}=0+J, (86)
where 6 is defined in (28). Finally, by (83), we have,
En— Ap = (Ep — Zn) + (Zy — Ay)
<D+ J+ (04 J) gm0y, (87)

which proves the delay upper bound. Note that by Theorem

an upper-bound on the delay is D + 01 gmax>0y-

Using minimum processing time and (83)), we have:

Ep — Ap = (By — Z) + (Zn — Ay)

> ¢™n 4 D, (88)

which proves the delay lower bound. Since the delay lower-
bound is not changed, and the upper-bound is increased by J+
J1 gmaxs0y, the jitter bound is increased by J + J1{gmaxs03.



