
Deficit Round-Robin: A Second Network Calculus
Analysis

Seyed Mohammadhossein Tabatabaee
EPFL

Lausanne, Switzerland
hossein.tabatabaee@epfl.ch

Jean-Yves Le Boudec
EPFL

Lausanne, Switzerland
jean-yves.leboudec@epfl.ch

Abstract—Deficit Round-Robin (DRR) is a widespread schedul-
ing algorithm that provides fair queueing with variable-length
packets. Bounds on worst-case delays obtained with DRR were
found by Boyer et al. They used a rigorous network calculus
approach and characterized the service obtained by one flow of
interest by means of a strict service curve. These bounds do not
make any assumptions on the interfering traffic flows hence are
pessimistic when the interfering traffic is constrained by some
arrival curves. For such cases, Soni et al. improved the worst-
case delay bounds by a correction term that accounts for arrival
curve constraints of interfering traffic, using a semi-rigorous
approach. Unfortunately, these latter bounds are incorrect, as
we show by exhibiting a counter-example. Then we derive
new service curves for DRR, which are rigorously proven, and
we account for arrival curve constraints of interfering traffic.
Hence, the resulting delay bounds are guaranteed to be correct.
Furthermore, we find numerically that they are smaller than the
incorrect ones obtained with the method of Soni et al. These
bounds also improve on the results by Boyer et al. when there
is no constraint on interfering traffic. Therefore, as of today,
they are the best known delay bounds for DRR. Our results are
obtained by applying the method of the pseudo-inverse.

I. INTRODUCTION

Deficit Round-Robin [1] is a scheduling algorithm that is
often used for scheduling tasks, or packets, in real-time sys-
tems or communication networks. It is a variation of Weighted
Round-Robin (WRR) that enables flows with variable packet
lengths to fairly share the capacity. The capacity is shared
among several clients or queues by giving each of them a
quantum value and by providing more service to those with
larger quantum. DRR is widely used because it exhibits a
low complexity, O(1), provided that an allocated quantum
is no smaller than the maximum packet size; and it can be
implemented in very efficient ways, such as the Aliquem
implementation [2].

We are interested in delay bounds for the worst case, as
is typical in the context of deterministic networking. To this
end, a standard approach is network calculus. Specifically,
with network calculus, the service offered to a flow of interest
by a system is abstracted by means of a service curve. A
bound on the worst-case delay is obtained by combining the
service curve with an arrival curve for the flow of interest.
An arrival curve is a constraint on the amount of data that
the flow of interest can send; such a constraint is necessary

to the existence of a finite delay bound. The exact definitions
are recalled in Section II-A.

The network calculus approach was applied to DRR in [3],
where a strict service curve is obtained. A strict service curve
is a special case of a service curve hence can be used to derive
delay (and backlog) bounds. The result was obtained under
general assumptions such as per flow maximum packet size
and assuming a server that offers any kind of strict service
curve rather than a constant-rate server. They show that their
delay bounds are smaller than or equal to all previous works
[4]–[6]. We call this the strict service curve of Boyer et al.

The strict service curve of Boyer et al. does not make any
assumptions on the interfering traffic. Hence, the resulting
delay bounds are valid, even in degraded operational mode,
i.e., when interfering traffic behaves in an unpredictable way.
However, in real-time systems, there is also interest in finding
worst-case delay bounds for non-degraded operational mode,
i.e., when interfering traffic behaves as expected and satisfies
known arrival curve constraints. For such cases, significantly
smaller delay bounds were presented at a recent RTSS confer-
ence [7]. The main improvement in [7] is derived as follows.
First, the network calculus delay bound is computed using the
strict service curve of Boyer et al.; then, it is improved by
what we call the correction term of Soni et al. The correction
term is obtained by subtracting two terms: The former gives
the maximum possible interference caused by any interfering
flow in a backlogged period of the flow of interest and is
derived from a detailed analysis of DRR; and the latter gives
the effective interference caused by an interfering flow in a
backlogged period of the flow of interest, given the knowledge
of an arrival curve of that interfering flow. Unfortunately, the
method is semi-rigorous and cannot be fully validated. Indeed,
our first contribution is to show that the correction term of
Soni et al. is incorrect; we do so by exhibiting a counter-
example that satisfies their assumptions and that has a larger
delay (Section III).

Our next contribution is obtaining a better strict service
curve for DRR when there is no arrival curve constraint on
interfering traffic. To do so, we rely on the method of pseudo-
inverse, as it enables us to capture all details of DRR; a similar
method was used to obtain a strict service curve for Interleaved
Weighted Round-Robin in [8]. We also provide simplified
lower bounds that can be used when analytic, closed-form

171

2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/21/$31.00 ©2021 IEEE
DOI 10.1109/RTAS52030.2021.00022

expressions are important. One such lower bound is precisely
the strict service curve of Boyer et al. (Fig. 3), hence the worst-
case delay bounds obtained with our strict service curve are
guaranteed to be less than or equal to those of Boyer et al.

Our following contribution is a new iterative method for
obtaining better strict service curves for DRR that account
for the arrival curve constraints of interfering flows. Our
method is rigorous and is based on pseudo-inverses and output
arrival curves of interfering flows. We also provide, due to the
computational aspect, two simpler variants. The delay bounds
obtained with our method are fully proven. Furthermore, we
compute them for the same case studies as in Soni et al. [7]
(including two illustration networks and an industrial-sized
one), and we find that they are smaller than the incorrect ones
that use the correction term of Soni et al. Hence as of today, it
follows that our delay bounds are the best proven delay bounds
for DRR, with or without constraints on interfering traffic.

The remainder of the paper is organized as follows. After
giving some necessary background in Section II, we describe
the counter example to Soni et al. in Section III. In Section
IV, we present our new strict service curves for DRR, with
no knowledge of interfering traffic. In Section V, we present
our new strict service curves for DRR that account for the
interfering arrival curve constraints. In Section VII, we use
numerical examples to illustrate the improvement in delay
bounds obtained with our new strict service curves.

II. BACKGROUND

A. Network Calculus Background

We use the framework of network calculus [9]–[11]. Let F
denote the set of wide-sense increasing functions f : R+ 7→
R+ ∪ {+∞}. A flow is represented by a cumulative arrival
function A ∈ F and A(t) is the number of bits observed on
the flow between times 0 and t. We say that a flow has α ∈ F
as arrival curve if for all s ≤ t, A(t)−A(s) ≤ α(t− s). An
arrival curve α can always be assumed to be sub-additive,
i.e., to satisfy α(s+ t) ≤ α(s) + α(t) for all s, t. A periodic
flow that sends up to a bits every b time units has, as arrival
curve, the stair function, defined by νa,b(t) = a

⌈
t
b

⌉
. Another

frequently used arrival curve is the token-bucket function α =
γr,b, with rate r and burst b, defined by γr,b(t) = rt + b for
t > 0 and γr,b(t) = 0 for t = 0. Both of these arrival curves
are sub-additive.

Consider a system S and a flow through S with input and
output functions A and D; we say that S offers β ∈ F as a
strict service curve to the flow if the number of bits of the flow
output by S in any backlogged interval (s, t] is D(t)−D(s) ≥
β(t−s). A strict service curve β can always be assumed to be
super-additive (i.e., to satisfy β(s+t) ≥ β(s)+β(t) for all s, t)
and wide-sense increasing (otherwise, it can be replaced by its
super-additive and non-decreasing closure [11].). A frequently
used strict service curve is the rate-latency function βR,T ∈ F ,
with rate R and latency T , defined by βR,T (t) = R[t− T]+,
where we use the notation [x]+ = max {x, 0}. It is super-
additive.

Assume that a flow, constrained by a sub-additive arrival
curve α, traverses a system that offers a strict service curve β
and that respects the ordering of the flow (per-flow FIFO). The
delay of the flow is upper bounded by the horizontal deviation
defined by h(α, β) = supt≥0{inf{d ≥ 0|α(t) ≤ β(t + d)}}.
Also, the output flow is constrained by an arrival curve α∗ =
α � β. The computation of h(α, β) and α∗ can be restricted
to t ∈ [0 t∗] for t∗ ≥ infs>0{α(s) ≤ β(s)} [11, Prop. 5.13],
[12].

For f and g in F , the min-plus convolution is defined by
(f ⊗ g)(t) = inf0≤s≤t{f(t − s) + g(s)} and the min-plus
deconvolution by (f � g)(t) = sups≥0{f(t+ s)− g(s)} [9]–
[11]. We will use the min-plus convolution of a stair function
with a linear function, as shown in Fig. 1.

b 2b 3b 4b

a
2a
3a
4a

t

νa,b(t)

(a) νa,b

a b 2b 3b 4b

a
2a
3a
4a

t

(λ1 ⊗ νa,b) (t)

(b) (λ1 ⊗ νa,b)

Fig. 1: Left: the stair function νa,b ∈ F defined for t ≥ 0 by
νa,b(t) = a

⌈
t
b

⌉
. Right: min-plus convolution of νa,b with the

function λ1 ∈ F defined by λ1(t) = t for t ≥ 0, when a ≤ b. The
discontinuities are smoothed and replaced with a unit slope.

The non-decreasing closure f↑ of a function f : R+ 7→
R+ ∪ {+∞} is the smallest function in F that upper bounds
f and is given by f↑(t) = sups≤t f(s).

The lower pseudo-inverse f↓ of a function f ∈ F is defined
by f↓(y) = inf{x|f(x) ≥ y} = sup{x|f(x) < y} and
satisfies [13, Sec. 10.1]:

∀x, y ∈ R+, y ≤ f(x)⇒ x ≥ f↓(y) (1)

The network calculus operations can be automated in tools
such as RealTime-at-Work (RTaW) [14], an interpreter that
provides efficient implementations of min-plus convolution,
min-plus deconvolution, non-decreasing closure, horizontal
deviation, the composition of two functions, and a maximum
and minimum of functions for piecewise-linear functions. All
computations use infinite precision arithmetic (with rational
numbers).

B. Deficit Round-Robin

A DRR subsystem serves n inputs, has one queue per input,
and uses Algorithm 1 for serving packets. Each queue i is
assigned a quantum Qi. DRR runs an infinite loop of rounds.
In one round, if queue i is non-empty, a service for this queue
starts and its deficit is increased by Qi. The service ends when
either the deficit is smaller than the head-of-the-line packet or
the queue becomes empty. In the latter case, the deficit is set
back to zero. The send instruction is assumed to be the only
one with a non-null duration. Its actual duration depends on

172

the packet size but also on the amount of service available to
the entire DRR subsystem.

Algorithm 1 Deficit Round-Robin
Input: Integer quantum Q1, Q2, . . . , Qn
Data: Integer deficits: d1, d2, . . . , dn

1: for i← 1 to n do
2: di ← 0;
3: end for
4: while True do
5: for i← 1 to n do
6: if (not empty(i)) then
7: . A service for queue i starts.
8: di ← di +Qi;
9: while (not empty(i))

10: and (size(head(i)) ≤ di) do
11: di ← di−size(head(i);
12: send(head(i));
13: removeHead(i);
14: end while
15: . A service for queue i ends.
16: if (empty(i)) then
17: di ← 0;
18: end if
19: end if
20: end for
21: end while

In [3] as in much of the literature on DRR, the set of packets
that use a given queue is called a flow; a flow may however be
an aggregate of multiple flows, called micro-flows [15]; and
an aggregate flow is called a class in [7]. In this paper, and in
order to be consistent with the network calculus conventions,
we use the former terminology and consider that a DRR input
corresponds to one flow. When comparing our results to [7],
the reader is invited to remember that a DRR flow in this paper
corresponds to a DRR class in [7].

The DRR subsystem is itself placed in a larger system
and can compete with other queuing subsystems. A common
case is when the DRR subsystem is at the highest priority
on a non-preemptive server with line rate c. Due to non-
preemption, the service offered to the DRR subsystem might
not be instantly available. This can be modelled by means of
a rate-latency strict service curve (see Section II-A for the
definition), with rate c and latency c

Lmax where Lmax is the
maximum packet size of lower priority. If the DRR subsystem
is not at the highest priority level, this can be modelled with
a more complex strict service curve [11, Section 8.3.2]. This
motivates us to assume that the aggregate of all flows in the
DRR subsystem receives a strict service curve β, which we
call “aggregate strict service curve”. If the DRR subsystem has
exclusive access to a transmission line of rate c, then β(t) = ct
for t ≥ 0. We assume that β(t) is finite for every (finite) t.
(Note that the aggregate strict service curve β should not be
confused with the strict service curves (also called “residual”

strict service curves in [3]) that we obtain in this paper for
every flow.)

Here, we use the language of communication networks,
but the results equally apply to real-time systems: Simply
map flow to task, map packet to job, map packet size to
job-execution time, and map strict service curve to “delivery
curve” [16], [17].

C. Strict Service Curve of Boyer et al.

The strict service curve of Boyer et al. for DRR is given in
[3], and we rewrite it using our notation. For flow i, let dmax

i be
its maximum residual deficit, defined by dmax

i = lmax
i −ε where

lmax
i is an upper bound on the packet size and ε is the smallest

unit of information seen by the scheduler (e.g., one bit, one
byte, or one 32-bit word). Also, let Qtot =

∑n
j=1Qj . Then,

for every flow i, their strict service curve is the rate-latency
service curve βRi,Ti

(β(t)) with rate Ri = Qi

Qtot
and latency

Ti =
∑
j 6=i d

max
j + (1 +

dmax
i

Qi
)
∑
j 6=iQj (see Section II-A for

the definition of a rate-latency function).

D. Correction Term of Soni et al.

When interfering flows are constrained by some arrival
curves, Soni et al. give a correction term that improves the
obtained delay bounds using the strict service curve of Boyer
et al. in [7], which we now rewrite using our notation. Assume
that every flow i has an arrival curve αi, and the server is
a constant-rate server with a rate equal to c. Let DBoyer-et-al

i

be the network calculus delay bound for flow i obtained by
combining αi with the strict service curve of Boyer et al., as
explained in Section II-C. The delay bound proposed in [7] is
DSoni-et-al
i = DBoyer-et-al

i − CSoni-et-al
i with

CSoni-et-al
i =

∑

j,j 6=i

[
Sj(D

Boyer-et-al
i)− αj(DBoyer-et-al

i)
]+

c
(2)

where Sj(t)
def
=
(
Qj + dmax

j

)
1t≥hi

+Qj(1 + b c(t−Hi)
Qtot

c)1t≥Hi
,

hi =
∑

j 6=iQj+d
max
j

c and Hi = hi +
Qi−dmax

i +
∑

j 6=iQj

c . In the
correction term CSoni-et-al

i , function Sj represents a lower bound
on the maximum interference caused by flow j in a backlogged
period of flow i; the term with the arrival curve αj represents
the actual interference caused by flow j.

Two additional improvements are used in [7]. The former,
called grouping, uses the fact that, if a collection of flows is
known to arrive on the same link, the rate limitation imposed
by the link can be used to derive, for the aggregate flow, an
arrival curve that is smaller than the sum of arrival curves of
the constituent flows. This improvement is also known under
the name of line shaping and is used, for example, in [18]–
[20]. The other improvement, called offsets, uses the fact that,
if several periodic flows have the same source and if their
offsets are known, the temporal separation imposed by the
offsets can be used to compute, for the aggregate flow, an
arrival curve that is also smaller than the sum of arrival curves
of the constituent flows (the latter would correspond to an
adversarial choice of the offsets). Both improvements reduce

173

𝑡 = 0

10 62 4 1

𝑡! = 10
𝑙
𝑐 𝑡!"## = 72.093

𝑙
𝑐
𝑡!
$%& = 87

𝑙
𝑐

𝐷!'(= 14.907)
*

Flow 3: Flow 2: Flow 1:

10

Output:

Packet Arrival:

(Arrival and departure of packet of interest)

10 20 30 40 50 60 62

Fig. 2: Trajectory scenario for the packet of interest of flow 1 (Section III-B). This packet arrives at tarr
1 and departs at tdep

1 .

the arrival curves, hence the delay bounds. Note that both
improvements are independent of the correction term (and,
unlike the correction term, are correct); they can be applied
to any method used to compute delay bounds, as we do in
Section VII.

III. THE CORRECTION TERM OF SONI ET AL. IS
INCORRECT

In this section, we show that the delay bound of Soni et al.,
namely the correction term given in equation (14) in [7], is
invalid. For flow 1 in a system, we denote the delay bound of
Soni et al. by DSoni-et-al

1 , and we denote the delay experienced
by a packet of flow 1 in the trajectory scenario by DTS

1 .

A. System Parameters

Consider a constant-rate server, with a rate equal to c, that
uses the DRR scheduling policy. All flows have packets of
constant size l, and have quanta Q1 = 100l, Q2 = 5l, and
Q3 = 10l.

Each flow is constraint by a token-bucket arrival curve:
1) α1(t) = γr1,b1 with r1 = 0.86c and b1 = l.
2) α2(t) = γr2,b2 with r2 = 0.0401c and b2 = l.
3) α3(t) = γr3,b3 with 0 ≤ r3 < Q3

Qtot
c and b3 = 20l.

Assuming a token-bucket γr,b for a flow implies that this flow
has a minimum packet-arrival time equal to l

r . Also, observe
that ri < Qi

Qtot
c for i = 1, 2, 3. We compute the delay bound

of Soni et al. for flow 1, as explained in II-D, and we obtain
DSoni-et-al

1 = 14.03383 lc − 1.236215 εc .

B. Trajectory Scenario

We now construct a possible trajectory for our system. First,
we give the inputs of our three flows. All queues are empty,
and the server is idle at time t = 0. Then,

1) Flow 3 arrives first and A3(t) = min (α3(t), 20l) for
t > 0 (yellow arrows in Fig. 2).

2) Flow 1 arrives shortly after flow 3 and A1(t) =
min (α1(t), 63l) for t > 0 (green arrows in Fig. 2).

3) Flow 2 arrives shortly after flows 1 and 3 and A2(t) =
min (α2(t), 4l) for t > 0 (red arrows in Fig. 2).

Then, for the output, we have the following:
1) Flow 3 arrives first and has 20 ready packets. As its

deficit was zero before this service and Q3 = 10l, the server
serves 10 packet of this flow. The end of the service for flow
3 is t1 = 10 lc (the first yellow part in Fig. 2).

2) Then, there is an emission opportunity for flow 1 and
A1(t1) = 9.6l, which means flow 1 has 9 ready packets at
time t1. The server starts serving packets of this flow. At the
end of service of these first 9 packets, at t2 = 19 lc , flow 1 has
another 8 ready packets; hence, the server still serves packets
of flow 1. This continues and 62 packets of flow 1 are served
in this emission opportunity; the emission opportunity ends at
t4 = 72 lc (the first green part in Fig. 2).

3) Then, there is an emission opportunity for flow 2 and
A2(t4) = 3.8872l, which means flow 2 has 3 ready packets at
time t4. At the end of service of 3 packets, another packet is
also ready for flow 2. In total, 4 packets of flow 2 are served
in this emission opportunity (the red part in Fig. 2).

4) A packet for flow 1 arrives at tarr
1 = 72+ 0.08l

r1
≈ 72.093 lc .

This packet should wait for flow 2 and flow 3 to use their
emission opportunities, and then it can be served. We call this
the packet of interest of flow 1, for which we capture the delay
(the first blue arrow, at tarr

1 , on Fig. 2).
5) For flow 3, again 10 packets are served (the second

yellow part in Fig. 2).
6) Finally, the packet of interest is served and its departure

time is tdep
1 = 87 lc .

It follows that the delay for the packet of interest is DTS
1 =

tdep
1 −tarr

1 = 15 lc− 0.08l
r1
≈ 14.907 lc . Note that DTS

1 > DSoni-et-al
1 .

To fix ideas, if l = 100 bytes and c = 100 Mb/s, the delay
bounds are DBoyer-et-al

1 = 146.228µs, DSoni-et-al
1 = 112.172µs,

and DTS
1 = 119.256µs.

174

C. The Contradiction with the Bound of Soni et al.

We found a trajectory scenario such that DSoni-et-al
1 is not a

valid delay bound. Let us explain why the approach of Soni et
al., presented in [7], gives an invalid delay bound. In [7], it is
implicitly assumed that as the delay for a packet of flow 1 is
upper bounded by DBoyer-et-al

1 (the obtained delay bound using
the strict service curve of Boyer et al. for flow 1), only packets
of interfering flows arriving within a duration DBoyer-et-al

1 will
get a chance to delay a given packet of flow 1. However, in the
trajectory scenario given in Section III-B, all packets of flow 2
(an interfering flow for flow 1) arriving within the time interval
[0, 75 lc] with the duration 75 lc >> DBoyer-et-al

1 = 18.3 lc−2.15 εc
delay the packet of interest of flow 1.

IV. NEW DRR STRICT SERVICE CURVE

Our next result is a non-convex strict service curve for DRR;
it dominates the state-of-the-art rate-latency strict service
curve for DRR by Boyer et al. We also give simpler, lower
approximations of it. Specifically, we also find a convex strict
service curve and two rate-latency strict service curves.

Theorem 1 (Non-convex Strict Service Curve for DRR). Let
S be a server shared by n flows that uses DRR, as explained
in Section II-B, with quantum Qi for flow i. Recall that the
server offers a strict service curve β to the aggregate of the
n flows. For any flow i, dmax

i is the maximum residual deficit
(defined in Section II-C).

Then, for every i, S offers to flow i a strict service curve
β0
i given by β0

i (t) = γi (β(t)) with

γi(x) = (λ1 ⊗ νQi,Qtot)
(

[x− ψi (Qi − dmax
i)]

+
)

(3)

+ min([x−
∑

j 6=i

(
Qj + dmax

j

)
]+, Qi − dmax

i)

Qtot =
n∑

j=1

Qj (4)

ψi(x)
def
= x+

∑

j,j 6=i
φi,j (x) (5)

φi,j(x)
def
=

⌊
x+ dmax

i

Qi

⌋
Qj +

(
Qj + dmax

j

)
(6)

Here, νa,b is the stair function, λ1 is the unit rate function
and ⊗ is the min-plus convolution, all described in Fig. 1.

The proof is in Section VI. See Fig. 3 for some illustrations
of β0

i . Observe that γi in (3) is the strict service curve obtained
when the aggregate strict service curve is β = λ1 (i.e., when
the aggregate is served at a constant, unit rate). In the common
case where β is equal to a rate-latency function, say βc,T , we
have β0

i (t) = γi(c(t−T)) for t ≥ T and β0
i (t) = 0 for t ≤ T ,

namely, β0
i is derived from γi by a re-scaling of the x axis

and a right-shift.
The function φi,j(x), defined in (6), is the maximum inter-

ference that flow j can create in any backlogged period of flow
i, such that flow i receives a service x. Using φi,j as it is results
in the strict service curve of Theorem 1, which has a complex

0 50 100 150 200
0

200

400

600

βminLatency
i

βmaxRate
i

β0
i

βconvex
i

Time (µs)

B
yt

es

Fig. 3: Strict service curves for DRR for an example with
three input flows, quanta = {199, 199, 199} bytes, maximum
residual deficits dmax = {99, 99, 99} bytes, and β(t) = ct with
c = 100 Mb/s (i.e., the aggregate of all flows is served at a
constant rate). The figure shows the non-convex DRR strict
service curve β0

i of Theorem 1; it also shows the two rate-
latency strict service curves βmaxRate

i (same as that Boyer et
al.) and βminLatency

i in Corollary 1 and the convex service curve
βconvex
i = max

(
βmaxRate
i , β

minLatency
i

)
in Corollary 2.

expression. If there is interest in simpler expressions, any
lower bounding function is a strict service curve. In Theorem
2, we show that any upper bounding of function φi,j , (which
gives a lower bound on γi) results in a lower bound of β0

i ,
which is a valid, though less good, strict service curve for
DRR.

Theorem 2 (Lower Bounds of Non-convex Strict Service
Curves for DRR). Make the same assumptions as in Theorem
1. Also, for flow i, consider functions φ′i,j ∈ F such that for
every other flow j 6= i, φ′i,j ≥ φi,j . Let ψ′i be defined as in
(5) by replacing functions φi,j with φ′i,j for every flow j 6= i.
Then, let γ′i be the lower-pseudo inverse of ψ′i, i.e., γ′i = ψ

′↓
i .

Let β0′

i be the result of Theorem 1 by replacing functions
φi,j , ψi, and γi with φ′i,j , ψ

′
i, and γ′i.

Then, S offers to flow i a strict service curve β0′

i and β0′

i ≤
β0
i .

The proof is in Section VI-B. There is often interest in
service curves that are piecewise-linear and convex, a simple
case is a rate-latency function. Specifically, convex piecewise-
linear functions are stable under addition and maximum, and
the min-plus convolution can be computed in automatic tools
very efficiently [11, Sec. 4.2]. Observe that, if the aggregate
service curve β is a rate-latency function, replacing γi by a
rate-latency (resp. convex) lower-bounding function also yields
a rate-latency (resp. convex) function for β0

i , and vice-versa.
Therefore, we are interested in rate-latency (resp. convex)
functions that lower bound γi. We now give two lower bounds
of the non-convex strict service curve for DRR using Theorem
2 that are common: a convex lower bound and two rate-latency
lower bounds.

To obtain a rate-latency strict service curve, we use two
affine upper bounds of φi,j : φmaxRate

i,j , which results in a rate-

175

0 100 200 300 400 500 600 700
0

500

1,000

1,500 φminLatency
i,j

φmaxRate
i,j

φi,j

φconcave
i,j

Bytes

B
yt

es

Fig. 4: Illustration of functions φi,j , φmaxRate
i,j , φminLatency

i,j , and
φconcave
i,j defined in (6), (7), (8), and (13), respectively. These

functions are obtained for the example of Fig. 3.

latency function with the maximum rate, and φminLatency
i,j , which

results in a rate-latency function with the minimum latency
(Fig. 4). They are defined by

φmaxRate
i,j (x)

def
=
Qj
Qi

(x+ dmax
i) +Qj + dmax

j (7)

φminLatency
i,j (x)

def
=

Qj
Qi − dmax

i

x+Qj + dmax
j (8)

Corollary 1 (Rate-Latency Strict Service Curve for DRR).
With the assumption in Theorem 1 and the definitions (7)-(8),
S offers to every flow i strict service curves γmaxRate

i (β(t))
and γminLatency

i (β(t)) with

γmaxRate
i = βRmax

i ,Tmax
i

(9)

γminLatency
i = β

Rmin
i ,Tmin

i
(10)

Rmax
i =

Qi
Qtot

and Tmax
i =

∑

j,j 6=i
φmaxRate
i,j (0) (11)

Rmin
i =

Qi − dmax
i

Qtot − dmax
i

and Tmin
i =

∑

j,j 6=i
φminLatency
i,j (0)

(12)

The right-hand sides in (9) and (10) are the rate-latency
functions defined in Section II-A.

The above result is obtained by using Theorem 2 with
φmaxRate
i,j and φminLatency

i,j ; hence, γi ≥ γmaxRate
i and γi ≥

γminLatency
i . Also, observe that the strict service curve of Boyer

et al., explained in Section II-C, is equal to γmaxRate
i (β(t)).

It follows that β0
i dominates it; hence, obtained delay bound

using β0
i are guaranteed to be less than or equal to those of

Boyer et al.
A better upper bound on φi,j can be obtained by taking its

concave closure (i.e., the smallest concave upper bound) that
is equal to the minimum of φmaxRate

i,j and φminLatency
i,j :

φconcave
i,j (x) = min

(
φmaxRate
i,j (x), φminLatency

i,j (x)
)

(13)

Corollary 2 (Convex Strict Service Curve for DRR). With the
assumption in Theorem 1 and the definitions (9)-(10), S offers
to every flow i a strict service curve γconvex

i (β(t)) with

γconvex
i (x) = max

(
γmaxRate
i (x), γminLatency

i (x)
)

(14)

The above result is obtained by using Theorem 2 with
φconcave
i,j . Also, it can be shown that it is the largest convex

lower bound of γi. When β is a rate-latency function, this
provides a convex piecewise-linear function, which has all the
good properties mentioned earlier.

V. NEW DRR STRICT SERVICE CURVES THAT ACCOUNT
FOR ARRIVAL CURVES OF INTERFERING FLOWS

The next result improves the strict service curves presented
in Section IV by taking into account arrival curve constraints
of interfering flows.

A. Service Curves Derived from Non-Concave φi,j
Theorem 3 (Strict Service Curve for DRR Derived from
Non-Concave Function φi,j). Let S be a server with the
assumptions in Theorem 1. Also, assume that every flow i has
an arrival curve αi ∈ F .

Let γi and φi,j be as defined as in (3) and (6). Recall that
β0
i is defined in Theorem 1. For every integer m ≥ 1 and

every flow i, define βmi ∈ F by

βmi = γi ◦
(
β + δm−1i

)
↑ (15)

with

δm−1i (t)
def
=
∑

j,j 6=i

[
φi,j

(
βm−1i (t)

)
−
(
αj � βm−1j

)
(t)
]+

(16)
Then 1) for every m ≥ 0, βmi is a strict service curve for flow
i in S and 2) β0

i ≤ β1
i ≤ β2

i ≤
In (15), ↑ is the non-decreasing closure, defined in Section

II-A, and ◦ is the composition of functions; also, note that β
and δm−1i are functions of the time t.

The proof is in Section VI-C. The essence of Theorem 3
is as follows. Equations (15) and (16) give new strict service
curves βmi for every flow i; they are derived from already
available strict service curves βm−1i and from arrival curves
on the input flows αj . Then, this is iteratively applied, starting
with the strict service curves that do not make any assumptions
on interfering traffic, as obtained in Section IV. Item 2) states
that, at every step, we have obtained a collection of strict
service curves that can only improve on the previous steps.

We use Theorem 3 as follows. The strict service curve βmi
obtained at the mth iteration gives a valid delay bound for
flow i, obtained as the horizontal deviation h(αi, β

m
i). For

every flow i, the sequence h(αi, β
m
i) decreases (in the wide

sense) with m and is non-negative, hence converges. As the
number of flows n is finite, we can stop computing strict
service curves when the delay bound decreases insignificantly
for all flows. Note that, at every iteration, we have obtained
valid delay bounds, hence the stopping criterion does not affect
the exactness of the final outcome.

176

Time (𝜇𝑠)

B
yt

es

𝛽!
"

𝛽!
#

𝛽!
$

𝛽!
%

50

100

150

200

250

300

350

400

450

500

550

0 20 40 60 80 100 120 140 160 180 200 220 240

Fig. 5: Strict service curves of Theorem 3 for flow 2 of the
example of Fig. 3; all flows have token-bucket arrival curves
with r = {5, 1, 1} l

512
Mb/s and b = {5l, l, l}. When applying the

scheme of Theorem 3, after 3 iterations, the strict service curves
of all flows become stationary in the horizon of the figure, and
the scheme stops. The sufficient horizon t∗ in this example is
200µs. Obtained with the RTaW online tool.

The computation of service curves in Theorem 3 and of the
resulting delay bounds can be restricted to a finite horizon.
Indeed, all computations in Theorem 3 are causal except for
the min-plus deconvolution αj � βm−1j . But, as mentioned
in Section II-A, such a computation and the computation of
delay bounds can be limited to t ∈ [0; t∗] for any positive
t∗ such that αj(t∗) ≤ βm−1j (t∗) for every m ≥ 1 and j =
1 : n. To find such a t∗, we can use any lower bound on
βm−1j , an obvious choice being β0

j . We then compute t∗j =
infs>0{αj(s) ≤ β0

j (s)} and take, as sufficient horizon, t∗ =
maxj t

∗
j . The computations in Theorem 3 can then be limited

to this horizon or any upper bound on it. In some cases that
we tested, the iterative scheme becomes stationary in such a
finite horizon (Fig. 5).

The computations can be performed with a tool such as
RealTime-at-Work (RTaW) [14], which uses an exact repre-
sentation of functions with finite horizon, by means of rational
numbers with exact arithmetic.

B. Simpler Versions of Theorem 3

Computation of the strict service curves of Theorem 3 can
be costly. We first explain some sources of complexity and
how to address them. We then propose two simpler versions.

One source of complexity lies in the initial strict service
curves β0

i . For every flow i, β0
i can be replaced by its simpler

lower bounds. As presented in Section IV, β0
i can be replaced

by its convex closure γconvex
i (β(t)), or rate-latency functions

γminLatency
i (β(t)) and γmaxRate

i (β(t)).
Another source of complexity is function φi,j (and the

resulting function γi). Function φi,j , as defined in (6), is non-
concave and non-linear (because it uses floor operations). This
might create discontinuities that can make the computation
hard, see Fig. 5. To address this problem, we first give a
generic Theorem to obtain simpler versions of Theorem 3,

by upper bounding φi,j , at the expense of perhaps less good
results.

Theorem 4 (Other Versions of Strict Service Curves for DRR
of Theorem 3). Make the same assumptions as in Theorem 3.
Also, for a flow i, let φ′i,j and γ′i be defined as in Theorem 2.

For every integer m ≥ 0, let βm
′

i be the result of Theo-
rem 3 by replacing functions φi,j and γi with φ′i,j and γ′i,
respectively.

Then, for every integer m ≥ 0, S offers to flow i a strict
service curve βm

′

i and β0′

i ≤ β1′

i ≤ β2′

i ≤
The proof is not given in detail, as it is similar to the proof

of Theorem 3 after replacing functions φi,j and γi with φ′i,j
and γ′i, respectively. By applying Theorem 4 with φconcave

i,j , we
obtain the following result.

Corollary 3 (Strict Service Curve for DRR Derived from
Concave Function φconcave

i,j). Theorem 3 holds by replacing φi,j
and γi with φconcave

i,j and γconvex
i defined in (13) and (14), and

the initial strict service curves β0
i as in Corollary 2.

The sequence of strict service curves obtained by Corol-
lary 3 is thus defined by βconcave,0

i = γconvex
i ◦ β = βconvex

i and
for m ≥ 1:

βconcave,m
i = γconvex

i ◦
(
β + δconcave,m−1

i

)
↑

(17)

with δconcave,m−1
i =

∑

j,j 6=i

[
φconcave
i,j ◦ βconcave,m−1

i − αj � βconcave,m−1
j

]+
. (18)

Let us explain why computing Corollary 3 is
simpler. The first reason is the computing of the
composition of φconcave

i,j with another function. Observe
that for a function f , φconcave

i,j (f(t)) is equal to

min
(
Qj

Qi
f(t) + φmaxRate

i,j (0),
Qj

Qi−dmax
i

f(t) + φminLatency
i,j (0)

)
,

which includes only multiplication, addition, and minimum
operations. The second reason is the computing of the
min-plus deconvolution. As illustrated in Fig. 6, computing
the min-plus deconvolution with such strict service curves is
much simpler than with those in Fig. 5. The last reason is
computing the composition of γconvex

i with another function.
Observe that for a function f , γconvex

i (f(t)) is equal to
max

(
Rmax
i [f(t)− Tmax

i]
+
, Rmin

i

[
f(t)− Tmin

i

]+)
, which

again includes only multiplication, addition, and maximum
operations.

By combining the application of Theorem 4 to φmaxRate
i,j and

φminLatency
i,j , we obtain the following result that has a complexity

slightly different than the previous results. It performs simpler
min-plus computations, but the number of such computations
is doubled. On the examples we tested, the run time is similar
to that of Corollary 3 when arrival curves are concave (token
buckets) but is smaller when they are non-concave (stair
functions).

Corollary 4 (Strict Service Curve for DRR Derived from
Combining Affine Functions φmaxRate

i,j and φminLatency
i,j). Theorem

177

0 50 100 150 200 250 300
0

100

200

300

400

500

Time (µs)

B
yt

es

βconcave,0
i

βconcave,1
i

βconcave,2
i

βconcave,3
i

βconcave,4
i

βconcave,5
i

βconcave,6
i

βconcave,7
i

βconcave,8
i

βconcave,9
i

Fig. 6: Strict service curves of Corollary 3 for flow 2 of the
example of Fig. 5. The iterative scheme is stopped when the
computed delay bounds for all flows decreases by less than
0.25µs. Obtained with MATLAB.

3 holds by replacing φi,j and γi with φmaxRate
i,j and γmaxRate

i

defined in (7) and (9). It also holds by replacing φi,j and γi
with φminLatency

i,j and γminLatency
i defined in (8) and (10). In both

cases, let the initial strict service curves β0
i be defined as in

Corollary 2. Last, the theorem also holds if, at each step m,
we take the maximum of the two strict service curves obtained
in each case.

The sequence of strict service curves obtained by Corol-
lary 4 is thus defined by βaffine,0

i = γconvex
i ◦ β = βconcave,0

i =

βconvex
i and for m ≥ 1, βaffine,m

i = max
(
β

′m
i , β

′′m
i

)
with

β
′m
i = γminLatency

i ◦
(
β + δminLatency,m−1

i

)
↑
,

β
′′m
i = γmaxRate

i ◦
(
β + δmaxRate,m−1

i

)
↑
.

(19)

Also, δminLatency,m−1
i and δmaxRate,m−1

i are equal to
∑

j,j 6=i

[
φminLatency
i,j ◦ βaffine,m−1

i − αj � βaffine,m−1
j

]+
and

∑

j,j 6=i

[
φmaxRate
i,j ◦ βaffine,m−1

i − αj � βaffine,m−1
j

]+
,

(20)
respectively. All the good properties presented for Corollary 3
are true here as well (see Fig. 7).

In Fig. 8, we apply the three methods in Theorem 3 and
Corollaries 3 and 4 to one illustrative example. The obtained
strict service curves of all schemes become stationary in the
horizon of interest, hence the schemes stop. The scheme of
Theorem 3 becomes stationary after 3 iterations, and the
schemes of Corollaries 3 and 4 become stationary after 16
iterations.

VI. PROOFS

A. Proof of Theorem 1

The idea of the proof is as follows. We consider a back-
logged period (s, t] of flow of interest i, and we let p be the

0 50 100 150 200 250 300
0

100

200

300

400

500

Time (µs)

B
yt

es

βaffine,0
i

βaffine,1
i

βaffine,2
i

βaffine,3
i

βaffine,4
i

βaffine,5
i

βaffine,6
i

βaffine,7
i

βaffine,8
i

βaffine,9
i

Fig. 7: Strict service curves of Corollary 4 for flow 2 of the
example of Fig. 5. The iterative scheme is stopped when the
computed delay bounds for all flows decreases by less than
0.25µs. The delay bounds obtained with the strict service curves
in the last iteration are the same as with Corollary 3; however,
the strict service curves of the first iterations slightly differ from
those of Fig. 6. Obtained with MATLAB.

Time (𝜇𝑠)

B
yt

es

𝛽!
"#$"%&',∗ = 𝛽!

%*+,$',∗

𝛽!
"#$&'- = 𝛽!

"#$"%&',. = 𝛽!
%*+,$',.

𝛽!∗

𝛽!
.

50

100

150

200

250

300

350

400

450

500

550

0
0 20 40 60 80 100 120 140 160 180 200 220 240

Fig. 8: Strict service curves of Theorem 3 and Corollaries 3
and 4 for flow 2 of the example of Fig. 5. When applying these
schemes, after a number of iterations, the strict service curves
of all flows become stationary in the horizon of the figure that
is larger than the sufficient horizon t∗ = 200µs. Therefore, the
schemes stop, and we denote these strict service curves by ∗.
Obtained with the RTaW online tool.

number of complete service opportunities for flow i in this
period, where a complete service opportunity starts at line 7
and ends at line 15 of Algorithm 1. p is upper bounded by
a function of the amount of service received by flow i, given
in (22). Given this, the amount of service received by every
other flow j is upper bounded by a function of the amount of
service received by flow i, given in (24). Using this result gives
an implicit inequality for the total amount of service in (26).
By using the technique of pseudo-inverse, this inequality is
inverted and provides a lower bound for the amount of service
received by the flow of interest.

From [3, Sub-goal 1], the number p of complete service

178

opportunities for flow of interest, i, in (s, t], satisfies

Di(t)−Di(s) ≥ pQi − dmax
i (21)

Therefore, as p is integer:

p ≤
⌊
Di(t)−Di(s) + dmax

i

Qi

⌋
(22)

Furthermore, it is shown in the proof of [3, Sub-goal 2] that

Dj(t)−Dj(s) ≤ (p+ 1)Qj + dmax
j (23)

Using (22) we obtain

Dj(t)−Dj(s) ≤
⌊
Di(t)−Di(s) + dmax

i

Qi

⌋
Qj + (Qj + dmax

j)

︸ ︷︷ ︸
φi,j(Di(t)−Di(s))

(24)
Next, as the interval (s, t] is a backlogged period, by the
definition of the strict service curve for the aggregate of flows
we have

β(t− s) ≤ (Di(t)−Di(s)) +
∑

j 6=i
(Dj(t)−Dj(s)) (25)

We upper bound the amount of service to every other flow j
by applying (24):

β(t− s) ≤ (Di(t)−Di(s)) +
∑

j,j 6=i
φi,j (Di(t)−Di(s))

︸ ︷︷ ︸
ψi(Di(t)−Di(s))

(26)
Then we invert (26) using (1) and obtain

Di(t)−Di(s) ≥ ψ↓i (β(t− s)) (27)

Lastly, we want to compute ψ↓i . Observe that, by plug-
ging φi,j in (5), ψi(x) = x +

⌊
x+dmax

i

Qi

⌋(∑
j 6=iQj

)
+∑

j 6=i
(
Qj + dmax

j

)
; as there is no plateau in ψi, its lower-

pseudo inverse is simply its inverse which is obtained by
flipping the axis (Fig. 9), and is obtained as

ψ↓i (x) =
(
λ1 ⊗ νQi,Qtot

) (
[x− ψi (Qi − dmax

i)]
+
)

(28)

+ min

[x−

∑

j 6=i

(
Qj + dmax

j

)
]+, Qi − dmax

i

ψ↓i is illustrated in Fig. 9. In (28), observe that the term with
min expresses the finite part at the beginning between 0 and
ψi (Qi − dmax

i); also, observe that the term with the min-plus
convolution expresses the rest (see Fig. 1.b with a = Qi and
b = Qtot =

∑n
j=1Qj .).

B. Proof of Theorem 2

First observe that, since φ′i,j ∈ F , it follows that β′i ∈ F .
Second, as for every j 6= i, φi,j ≤ φ

′

i,j , we have ψi ≤ ψ
′

i.
In [13, Sec. 10.1], it is shown that ∀f, g ∈ F , f ≥ g ⇒
f↓ ≤ g↓. Applying this with f = ψ′i and g = ψi gives that
ψ

′↓
i ≤ ψ↓i . It follows β′i(t) = ψ

′↓
i (β(t)) ≤ ψ↓i (β(t)) = βi(t).

The conclusion follows from the fact that any lower bound in
F of a strict service curve is a strict service curve.

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

! !"
#(𝑄

!
+
𝑑 !$

%&
)

𝑄# − 𝑑#$%&

!
!"#

𝑄!

𝑄#

𝑄#

!
!"#

(𝑄! + 𝑑!$%&)

𝑄#

!
!"#

𝑄!
𝑄# − 𝑑#$%&

𝜓
#(
𝑄 #
−
𝑑 #$

%&
)

𝜓#(𝑄# − 𝑑#$%&)

𝑦 =
𝑥

𝑄#

𝜓!

𝜓!
↓

Fig. 9: Illustration of ψi and its lower-pseudo inverse ψ↓i , defined
in (5) and (28), respectively.

C. Proof of Theorem 3

The idea of the proof is as follows. First we give a lemma on
the operation of DRR, which follows from some of the results
in the proof of Theorem 1. Then, we study the mapping that
transforms the collection of service curves in one iteration
of the theorem. We show that this mapping transforms a
collection of strict service curves into another collection of
strict service curves and that it is isotone. Last, we show that
the output of the first iteration is an upper bound of the input,
which, using isotony, concludes the proof.

Lemma 1. Assume that the output of flow j is constrained
by an arrival curve α∗j ∈ F , i.e., Dj is constrained by α∗j .
Then, for any backlogged period (s, t] of flow i, the amount
of service for flow j 6= i in (s, t] is upper bounded by

Dj(t)−Dj(s) ≤ φi,j (Di (t)−Di (s))

−
[
φi,j (Di (t)−Di (s))− α∗j (t− s)

]+
(29)

where φi,j is defined in (6).

Proof. First, by (24), we have

Dj(t)−Dj(s) ≤ φi,j (Di (t)−Di (s)) (30)

Second, as α∗j is an arrival curve for Dj , we have

Dj(t)−Dj(s) ≤ α∗j (t− s) (31)

Combine (30) and (31) to derive

Dj(t)−Dj(s) ≤ min
(
φi,j (Di (t)−Di (s)) , α∗j (t− s)

)

(32)
Observe that for any two numbers x, y, we have min (x, y) =
x− [x− y]

+. Apply this to the previous equation and obtain
(29).

179

The proof continues with the study of the mapping
Π : Fn → Fn that transforms (βm−11 , ..., βm−1n) into
(βm1 , ..., β

m
n), namely, Π(β1, ..., βn) = (β′1, ..., β

′
n) with

β′i = γi ◦

β +

∑

j,j 6=i
[φi,j ◦ βi − (αj � βj)]+

↑

(33)

Lemma 2. Let (β1, ..., βn) ∈ Fn and (β′1, ..., β
′
n) =

Π(β1, ..., βn). Assume that, for every i, βi is a strict service
curve for flow i. Then β′i is also a strict service curve for every
flow i.

Proof. Consider a backlogged period (s, t] of flow of interest i.
As the interval (s, t] is a backlogged period, and since β is a
strict service curve for the aggregate of flows, we have

β(t− s) ≤ (Di(t)−Di(s)) +
∑

j 6=i
(Dj(t)−Dj(s)) (34)

Since βj is a service curve for flow j, it follows that αj�βj
is an arrival curve for the output of flow j (Section II-A).
Apply Lemma 1 with α∗j = αj � βj and obtain

β(t− s) +
∑

j,j 6=i
[φi,j (Di (t)−Di (s))− (αj � βj)(t− s)]+

≤ (Di(t)−Di(s)) +
∑

j,j 6=i
φi,j (Di(t)−Di(s))

︸ ︷︷ ︸
ψi(Di(t)−Di(s))

(35)
Then, as βi is a strict service curve for flow i, we have Di(t)−
Di(s) ≥ βi(t − s). Combining it with the above equation it
follows that

β(t− s) +
∑

j,j 6=i

[
φi,j (βi(t− s))− α∗j (t− s)

]+

≤ ψi (Di(t)−Di(s))

(36)

As ψi is an increasing function, it follows that the right-hand
side is an increasing function of (t − s). Then, by applying
[11, Lemma 3.1], it follows that the inequality holds for the
non-decreasing closure of the left-hand side (with respect to
t− s), namely

β +

∑

j,j 6=i
[φi,j ◦ βi − αj � βj]+

↑

(t− s)

≤ ψi (Di(t)−Di(s)) (37)

Then, we use the lower pseudo-inverse technique to invert (37)
as in (1):

Di(t)−Di(s) ≥

ψ↓i

β +

∑

j,j 6=i
[φi,j ◦ βi − αj � βj]+

↑

(t− s)

 (38)

Hence, the right-hand side is a strict service curve for flow i.
Observe that γi = ψ↓i .

By Theorem 1, β0
i is a strict service curve for flow i; it

follows from Lemma 2 that, for every m ≥ 0, βmi is also a
strict service curve for flow i, i.e., item 1) is shown. To show
item 2), we first show that Π is isotone.

Lemma 3. Let (β1, ..., βn) ∈ Fn and (β̂1, ..., β̂n) ∈ Fn such
that βi ≤ β̂i for every i. Let (β′1, ..., β

′
n) = Π(β1, ..., βn) and

(β̂′1, ..., β̂
′
n) = Π(β̂1, ..., β̂n). Then β′i ≤ β̂′i for every i.

Proof. Let δi =
∑
j,j 6=i [φi,j ◦ βi − (αj � βj)]+ and δ̂i =

∑
j,j 6=i

[
φi,j ◦ β̂i − (αj � βj)

]+
, so that β′i = γi ◦ (β + δi)↑

and β̂′i = γi ◦
(
β + δ̂i

)
↑
.

As φi,j is wide-sense increasing we have φi,j◦βi ≤ φi,j◦β̂i.
Also, by [11, Section 2.4], we have αj�βj ≥ αj� β̂j . Hence,

φi,j ◦ βi − (αj � βj) ≤ φi,j ◦ β̂i −
(
αj � β̂j

)
, thus (39)

[φi,j ◦ βi − (αj � βj)]+ ≤
[
φi,j ◦ β̂i −

(
αj � β̂j

)]+
(40)

The above inequality holds for every j 6= i thus δi ≤ δ̂i and

β + δi ≤ β + δ̂i ≤ (β + δ̂i)↑ (41)

Then, by applying [11, Lemma 3.1], it follows that the above
inequality holds for the non-decreasing closure of the left-hand
side:

(β + δi)↑ ≤ (β + δ̂i)↑ (42)

Using the above inequality and as γi is increasing, it follows
β′i = γi ◦ ((β + δi)↑) ≤ γi ◦

(
(β + δ̂i)↑

)
= β̂′i.

We next show that β0
i ≤ β1

i for every i. As δ0i ≥ 0, we
have

β0
i = γi ◦ β ≤ γi ◦ (β + δ0i)↑ = β1

i (43)

Then, using the above equation and Lemma 3, we obtain that
βmi ≤ βm+1

i for every m and i, i.e., item 2) of Theorem 3
holds.

VII. NUMERICAL EVALUATION

In this section, we compare the obtained delay bounds by
using our new strict service curves for DRR, presented in
Sections IV and V, to those of Boyer et al. and to Soni et
al. We use all network configurations that were presented by
Soni et al. [7], specifically, two illustration networks and an
industrial-sized one. For the illustration networks, we use the
exact same configuration of flows and switches that Soni et al.
use. For the industrial-sized network, Soni kindly replied to
our e-mail request by saying that, for confidentiality reasons,
they do not have the rights to provide more details about
the network configuration than what is already given in [7].
Consequently, we use the same network but randomly choose
the missing information (explained in detail in Section VII-B).

180

The paper is organized as follows. The considered network
model is presented in section II. It is followed by a brief
recall of the DRR scheduling policy, its latency and delay
calculation using Network Calculus in section III. Section IV
exhibits sources of pessimism in DRR WCTT analysis. The
main contribution is given in section V, where we propose an
optimized NC approach for DRR scheduler based networks.
In Section VI further improvements to classical NC approach
are given, including the integration of end system scheduling.
An evaluation on an industrial configuration is given in section
VII. Section VIII concludes the paper and gives directions for
future works.

II. NETWORK AND FLOW MODEL

In this paper, we consider a real-time switched Ethernet
network. It is composed of a set of end systems, interconnected
by switched Ethernet network via full-duplex links. Thus, there
are no collisions on links. Each link offers a bandwidth of R
Mbps in each direction.

Each end system manages a set of flows, and each switch
forwards a set of flows through its output ports, based on a
statically defined forwarding table. This forwarding process
introduces a switching latency, denoted by sl. Each port h of
a switch Sx, denoted by Sh

x , can be connected at most to one
end system or another switch. Each output port, of a switch or
of an end system, has a set of buffers managed by a scheduler
supporting a scheduling policy, for example: First-In-First-Out
(FIFO), Fixed Priority (FP) queuing or Round Robin (RR) etc.
In this paper, the considered network uses Deficit Round Robin
(DRR) scheduler at each output port.

Sporadic flows are transmitted on this network. Each spo-
radic flow vi gives rise to a sequence of frames emitted
by a source end system with respect to the minimum inter-
arrival duration imposed by a traffic shaping technique. This
minimum inter-arrival duration is called the period Tiof flow
vi. If the duration between any two successive emissions of
a flow vi is Ti, then, the flow viis periodic. The size of
each frame of flow viis constrained by a maximum frame
length (lmax

i) and a minimum frame length (lmin
i). Each flow

vi follows a predefined path Pifrom its source end system till
its last visited output port, and then arrives at its destination

end system.
Figure 1 shows an example of a switched Ethernet network
configuration which consists of 4 switches, S1 to S4, intercon-
necting 10 end systems, e1 to e10, through full duplex links
to transfer 20 flows, v1 to v20. In this work, each output port

of a switch has a set of buffers controlled by a Deficit Round
Robin (DRR) scheduler. The links provide a bandwidth of

R = 100 Mbits/s. Table I summarizes flow features (inter-
arrival duration Tias well as minimum and maximum frame
size lmin

i and lmax
i).

III. DEFICIT ROUND ROBIN

In this section, we briefly recall the DRR scheduling policy.
A more detailed description can be found in [6] and [7]. We

e1
e7
e2
e4

e5
e6

e3

v1

e10

v12
v17
v13

v2 v14
v18 v20

v6v3
v15 v19

v12v1 v13 v17
v2 v14 v18 v20

v6v3 v15 v19
v7 v9 v10v4
v8 v11v5 v16

v1 ... v5
v6 ... v12

v13 ... v20
S4

1

2

e8
e9S2

S1

S3

Fig. 1: Switched Ethernet network (Example 1)

TABLE I: Network Flow Configuration

Flows vi Ti(µsec) lmax
i (byte) lmin

i (byte)
v12, v20 512 100 80
v1, v7, v8, v9, v17 512 99 80
v2, v4, v5, v10, v13, v16, v18 256 100 80
v3, v11, v14, v15, v19 256 99 80
v6 96 100 80

then summarize the DRR worst-case analysis in [7], [8]. This
analysis is based on network calculus [1].

A. DRR scheduler principle

DRR was designed in [6] for a fair sharing of server capacity
among flows. DRR is mainly a variation of Weighted Round
Robin (WRR) which allows flows with variable packet length
to fairly share the link bandwidth.

The flow traffic in a DRR scheduler is divided into buffers
based on few predefined classes. Each class receives service
sequentially based on the presence of a pending frames in a
class buffer and the credit assigned to the class. Each class
buffer follows FIFO queuing to manage the flow packets. The
DRR scheduler service is divided into rounds. In each round
all the active classes are served. A class is said to be active
when it has some flow packet in output buffer waiting to
be transmitted. The basic idea of DRR is to assign a credit
quantum Qh

x to each flow class Cx at each switch output port
h. Qh

x is the number of bytes which is allocated to Cx for each
round at port h. At any time, the current credit of a class Cx

at a port h is called its deficit ∆h
x. Each time Cx is selected

by the scheduler, Qh
x is added to its deficit ∆h

x. As long as
Cx queue is not empty and ∆h

x is larger than the size of Cx

queue head-of-line packet, this packet is transmitted and ∆h
x

is decreased by this packet size. Thus, the scheduler moves
to next class when either Cx queue is empty or the deficit
∆h

x is too small for the transmission of Cx queue head-of-line
packet. In the former case, ∆h

x is reset to zero. In the latter
one, ∆h

x is kept for the next round.
The credit quantum Qh

x is defined for each port h. It must
allow the transmission of any frame from class Cx crossing
h. Thus, Qh

x has to be at least the maximum frame size of
Cx flows at port h. Let Fh

Cx
be the set of flows of class Cx

at output port h. Let lmax,h
Cx

and lmin,h
Cx

be the max and min
frame size among all class Cx flows at output port h. We have:

lmax,h
Cx

= max
i∈Fh

Cx

lmax
i , lmin,h

Cx
= min

i∈Fh
Cx

lmin
i (1)

Algorithm 1 shows an implementation of DRR at a switch
output port h with n traffic classes. First, deficits are set to 0

���

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 09,2020 at 18:31:58 UTC from IEEE Xplore. Restrictions apply.

The paper is organized as follows. The considered network
model is presented in section II. It is followed by a brief
recall of the DRR scheduling policy, its latency and delay
calculation using Network Calculus in section III. Section IV
exhibits sources of pessimism in DRR WCTT analysis. The
main contribution is given in section V, where we propose an
optimized NC approach for DRR scheduler based networks.
In Section VI further improvements to classical NC approach
are given, including the integration of end system scheduling.
An evaluation on an industrial configuration is given in section
VII. Section VIII concludes the paper and gives directions for
future works.

II. NETWORK AND FLOW MODEL

In this paper, we consider a real-time switched Ethernet
network. It is composed of a set of end systems, interconnected
by switched Ethernet network via full-duplex links. Thus, there
are no collisions on links. Each link offers a bandwidth of R
Mbps in each direction.

Each end system manages a set of flows, and each switch
forwards a set of flows through its output ports, based on a
statically defined forwarding table. This forwarding process
introduces a switching latency, denoted by sl. Each port h of
a switch Sx, denoted by Sh

x , can be connected at most to one
end system or another switch. Each output port, of a switch or
of an end system, has a set of buffers managed by a scheduler
supporting a scheduling policy, for example: First-In-First-Out
(FIFO), Fixed Priority (FP) queuing or Round Robin (RR) etc.
In this paper, the considered network uses Deficit Round Robin
(DRR) scheduler at each output port.

Sporadic flows are transmitted on this network. Each spo-
radic flow vi gives rise to a sequence of frames emitted
by a source end system with respect to the minimum inter-
arrival duration imposed by a traffic shaping technique. This
minimum inter-arrival duration is called the period Ti of flow
vi. If the duration between any two successive emissions of
a flow vi is Ti, then, the flow vi is periodic. The size of
each frame of flow vi is constrained by a maximum frame
length (lmax

i) and a minimum frame length (lmin
i). Each flow

vi follows a predefined path Pi from its source end system till
its last visited output port, and then arrives at its destination
end system.

Figure 1 shows an example of a switched Ethernet network
configuration which consists of 4 switches, S1 to S4, intercon-
necting 10 end systems, e1 to e10, through full duplex links
to transfer 20 flows, v1 to v20. In this work, each output port
of a switch has a set of buffers controlled by a Deficit Round

Robin (DRR) scheduler. The links provide a bandwidth of
R = 100 Mbits/s. Table I summarizes flow features (inter-
arrival duration Ti as well as minimum and maximum frame
size lmin

i and lmax
i).

III. DEFICIT R OUND ROBIN

In this section, we briefly recall the DRR scheduling policy.
A more detailed description can be found in [6] and [7]. We

e1
e7
e2
e4

e5
e6

e3

v1

e10

v12
v17
v13

v2 v14
v18 v20

v6v3
v15 v19

v12v1 v13 v17
v2 v14 v18 v20

v6v3 v15 v19
v7 v9 v10v4
v8 v11v5 v16

v1 ... v5
v6 ... v12

v13 ... v20
S4

1

2

e8
e9S2

S1

S3

Fig. 1: Switched Ethernet network (Example 1)

TABLE I: Network Flow Configuration

Flows vi Ti(µsec) lmax
i (byte) lmin

i (byte)
v12, v20 512 100 80
v1, v7, v8, v9, v17 512 99 80
v2, v4, v5, v10, v13, v16, v18 256 100 80
v3, v11, v14, v15, v19 256 99 80
v6 96 100 80

then summarize the DRR worst-case analysis in [7], [8]. This
analysis is based on network calculus [1].

A. DRR scheduler principle

DRR was designed in [6] for a fair sharing of server capacity
among flows. DRR is mainly a variation of Weighted Round
Robin (WRR) which allows flows with variable packet length
to fairly share the link bandwidth.

The flow traffic in a DRR scheduler is divided into buffers
based on few predefined classes. Each class receives service
sequentially based on the presence of a pending frames in a
class buffer and the credit assigned to the class. Each class
buffer follows FIFO queuing to manage the flow packets. The
DRR scheduler service is divided into rounds. In each round
all the active classes are served. A class is said to be active
when it has some flow packet in output buffer waiting to
be transmitted. The basic idea of DRR is to assign a credit
quantum Qh

x to each flow class Cx at each switch output port
h. Qh

x is the number of bytes which is allocated to Cx for each
round at port h. At any time, the current credit of a class Cx

at a port h is called its deficit ∆h
x. Each time Cx is selected

by the scheduler, Qh
x is added to its deficit ∆h

x. As long as
Cx queue is not empty and ∆h

x is larger than the size of Cx

queue head-of-line packet, this packet is transmitted and ∆h
x

is decreased by this packet size. Thus, the scheduler moves
to next class when either Cx queue is empty or the deficit
∆h

x is too small for the transmission of Cx queue head-of-line
packet. In the former case, ∆h

x is reset to zero. In the latter
one, ∆h

x is kept for the next round.
The credit quantum Qh

x is defined for each port h. It must
allow the transmission of any frame from class Cx crossing
h. Thus, Qh

x has to be at least the maximum frame size of
Cx flows at port h. Let Fh

Cx
be the set of flows of class Cx

at output port h. Let lmax,h
Cx

and lmin,h
Cx

be the max and min
frame size among all class Cx flows at output port h. We have:

lmax,h
Cx

= max
i∈Fh

Cx

lmax
i , lmin,h

Cx
= min

i∈Fh
Cx

lmin
i (1)

Algorithm 1 shows an implementation of DRR at a switch
output port h with n traffic classes. First, deficits are set to 0

���

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 09,2020 at 18:31:58 UTC from IEEE Xplore. Restrictions apply.

to FS1
4

C1
= v1, v2, v3, v4, v5. The overall arrival curve of class

C1 can be computed by:

↵
S1

4

C1
(t) =

X

i2FS1
4

C1

↵
S1

4
i (t)

which is illustrated by blue line in Figure 4a.

bits

Q
S1

4
1 -�max,S1

4
1

D
S1

4
1

1
R

1

t
(µsec)sl

↵
S1

4
C1

P

i2FS1
4

C1

(bi)

X
S1

4
C1

Y
S1

4
C1

⇥
S1

4
C1

�
S1

4
C1

⇢
S1

4
C1

P
1j3

Q
S1
4

j ��
max,S1

4
1

R

bits

Qh
x-�max,h

x

Dh
i

1

R
1

t
(µsec)

sl

↵h
x,SER

P
i2Fh

Cx

(bi)

Xh
x Y h

x

⇥h
x

�h
x

⇢h
x

max
i2Fh

x

(bi)

(a) NC curves at S1
4 (b) NC Curves with serialization

Fig. 4: NC curves at S1
4

b) Service Curve: According to NC, the full service
provided at a switch output port h with a transmission rate
of R (bits/s) is defined by:

�h(t) = R[t� sl]+

where sl is the switching latency of the switch, and [a]+ means
max{a, 0}.

According to [8] and [7], the full service is shared by
all DRR classes at an output port h and each class Cx has
a predefined service rate ⇢h

x based on its assigned credit
quantum Qx as explained in Section III-B Equation (2).
Besides a reduced service rate, each class Cx could experience
a DRR scheduler latency ⇥h

x before receiving service with the
predefined rate ⇢h

x. The scheduler latency can be calculated
by Equation (6). Therefore, based on the NC approach, the
residual service �DRR

Cx
to each class Cx is given by:

�h
Cx

(t) = ⇢h
x[t�⇥h

x � sl]+ (8)

Y h
x delay is considered right after Xh

x , in order to get a convex
service curve.

In the example of the output port S1
4 , class C1 service curve

is:

�
S1

4

C1
(t) = ⇢

S1
4

1 ⇤ [t�⇥
S1

4
1 � sl]+ =

100

3
(t� 63.52� sl)+

which is illustrated in Figure 4a.
The actual service curve is a staircase one (shown by the

dashed black line in Figure 4a), as a flow alternates between
being served and waiting for its DRR opportunity, as explained
in [8]. For computation reason, NC approach employs the
convex curve represented by equation (8) which is an under-
estimated approximation of actual staircase curve.

c) Delay bound: According to NC, the delay experienced
by a Cx flow vi constrained by the arrival curve ↵h

Cx
(t) in a

switch output port h offering a strict DRR service curve �h
Cx

(t)
is bounded by the maximum horizontal difference between the
curves ↵h

Cx
(t) and �h

Cx
(t). Let Dh

i be this delay. It is computed
by:

Dh
i = sup

s�0
(inf{⌧ � 0|↵h

Cx
(s) �h

Cx
(s + ⌧)}) (9)

Therefore, the end-to-end delay upper bound of a Cx flow
vi is denoted by DETE

i and it is calculated by:

DETE
i =

X

h2Pi

Dh
i (10)

Based on the equation (9) and (10), the delay bound calcu-
lated for flow v1 of class C1 is found to be D

S1
4

1 = 234.91 µs
and DETE

1 = 387.63 µs.

IV. PESSIMISM OF DRR WCTT ANALYSIS

The delay upper bound Dh
i for flow vi from class Cx

presented in the previous section assumes that, at each output
port h, every interfering class Cy consumes maximum service.
More precisely, it assumes that, in any DRR round rdk, each
class Cy (y 6= x) is always active and transmits frames of at
least the size of its quantum value Qh

y . Such an assumption
might be pessimistic. Indeed, the traffic from one or several
Cy classes might be too low to consume quantum values Qh

y

in each round. The effect of such a pessimism on service curve
is shown in Figure 5.

bits

t

rd1 rd2 rd3

C1, C2, C3

active
C1, C2

active

t

rd1 rd2 rd3 service

C1, C2, C3

active
C1, C2, C3

active

t
C1, C2, C3

active
C1, C2

active

Case 1

Case 1

Case 2

Case 2

�‘C1

�C1

end of
service
end of

Fig. 5: Pessimism in DRR Service

This pessimism can be illustrated with the example in Figure
6. This example is based on the network architecture in Figure
1. The difference is that part of C2 and C3 flows that are
transmitted from S4 to e8 in Figure 1 are transmitted to e9 in
Figure 6.

S2
S1

S3
e6

v12v1 v13 v17
v2 v14 v18 v20

v6v3 v15 v19
v7 v9 v10v4
v8 v11v5 v16e10

S4
1

2

v1 ... v5
v6 v7 v8 v12

v13 v14 v15 v20

v9 ... v11
v16 ... v19

e8
e9

Fig. 6: Switched Ethernet network (Example 2)

We focus on output port S1
4 to calculate the delay experi-

enced by flow v1 from class C1. In the given example, it is

Example 1, taken from Soni et al. Example 2, taken from Soni et al.

Fig. 10: Networks of Examples 1 and 2, taken from Soni et al [7]. Examples 1 and 2 differ only by the configuration of the switch
S4.

v4 v5 v2 v7 v9 v10 v1 v3 v16 v8 v11 v6 v18 v20 v15 v19 v12 v14 v13 v17

200

250

300

350

400

450

500

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Token-bucket arrival curves

Example 1 Example 2

v9 v10 v11 v16 v18 v19 v4 v7 v20 v17 v5 v15 v8 v6 v2 v14 v12 v13 v1 v3

100

150

200

250

300

350

400

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

v9 v10 v11 v16 v18 v4 v19 v20 v7 v5 v6 v17 v15 v8 v2 v14 v12 v13 v1 v3

100

150

200

250

300

350

400

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Token-bucket arrival curves Stair arrival curves

v4 v5 v2 v7 v9 v10 v1 v3 v16 v18 v20 v6 v8 v11 v15 v19 v14 v12 v13 v17

200

250

300

350

400

450

500

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Stair arrival curves

v4 v5 v2 v7 v9 v10 v1 v3 v16 v8 v11 v6 v18 v20 v15 v19

250

300

350

400

450

500

D
el

ay
s

(m
ic

ro
 s

ec
on

ds
)

Delay bounds obtained using the strict service curve of Boyer et al
Delay bounds obtained using Corollary 2
Delay bounds obtained using Theorem 1
Delay bounds obtained using the correction term of Soni et al
Delay bounds obtained using Corollary 4
Delay bounds obtained using Corollary 3
Delay bounds obtained using Theorem 3

Fig. 11: Delay bounds of flow v1, v2, . . . , v20 in Example 1 and Example 2 of Fig. 10. In each example, we follow [7] and assume
once that flows are constrained by token-bucket arrival curves, and once that flows are constrained by stair arrival curves. The delay
bounds of Soni et al. are taken from [7], and other results are computed with the RTaW online tool. First, delay bounds obtained
with our new strict service curves for DRR, with no knowledge on the interfering traffic, are always better than those of Boyer et
al. Second, delay bounds obtained with our new strict service curve for DRR that accounts for arrival curve of interfering flows
are always better than those of Soni et al. The delay bounds obtained with Corollary 4 are visually indistinguishable from those
obtained with Corollary 3. In each plot, flows are ordered by values of Boyer’s bound.

A. Illustration Networks

Example 1 and 2 are illustrated in Fig. 10. We use the exact
same network with the exact same configuration for flows and
switches that Soni et al. use in [7]. Examples 1 and 2 differ
only by the configuration of the switch S4. Flows {v1 . . . v5},
{v6 . . . v12}, and {v13 . . . v20} are assigned to class C1, C2,
and C3, respectively. There is one DRR scheduler at every
switch output port; what we called “flow” earlier in the paper
corresponds here to a class hence n = 3. Inside a class,
arbitration is FIFO (all packets of all flows of a given class
are in the same FIFO queue). Also, as in [7], we assume that
queuing is on output ports only. All classes have the same
quantum equal to 199 bytes. The rate of the links are equal
to c = 100 Mb/s, and every switch Si has a switching latency
equal to 16µs. Every flow vi has a maximum packet size lmax

i

and minimum packet arrival Ti. Hence, flow vi is constrained
by a token-bucket arrival curve with rate equal to lmax

i

Ti
and

burst equal to lmax
i ; also, it is constrained by a stair arrival

curve given by lmax
i d tTi

e.
For the sake of comparison, as Soni et al. do not consider

grouping and offsets (explained in Section II-D) in these two
examples, we also do not consider them. This means that
the arrival curve we use for bounding the input of a class
at a switch is simply equal to the arrival curves expressed for
every member flow. Arrival curves are propagated using the
delay bounds computed at the upstream nodes. We illustrate

the reported values in [7] for the delay bounds of Soni et al.
For the other results, we use the RTaW online tool (Fig. 11).
As explained in Section II-A, RTaW provides all the necessary
operations to implement our new strict service curves for DRR.
First, observe that delay bounds obtained with our new strict
service curves for DRR, with no knowledge on the interfering
traffic, are always better than those of Boyer et al. Second,
delay bounds obtained with our new strict service curve for
DRR that accounts for arrival curve of interfering flows are
always better than the (incorrect) ones of Soni et al. The
obtained delay bounds of Theorem 3 are better than or equal
to those of Corollaries 3 and 4; also, they are almost equal
for both Corollaries. When using token-bucket arrival curves,
the run-time of Theorem 3 is in the order of 3 minutes; for
Corollaries 3 and 4 it is in the order of 30 seconds; when
using stair arrival curves, the run-time of Theorem 3 is in the
order of 5 minutes; for Corollaries 3 and 4 it is in the order
of 1 minute and 45 seconds, respectively.

B. Industrial-Sized Network

We use the network of Fig. 12; it corresponds to a test
configuration provided by Airbus in [19]. The industrial-sized
case study that Soni et al. use in [7] is based on this network
in [21]. We combine the available information in both papers
to understand this network. It includes 96 end-systems, 8
switches, 984 flows, and 6412 possible paths. The rate of

181

• The required crossing delay of the network in order to
allow the applications to preserve their response times.
Network latency is a key performance parameter since
flight-critical data must be delivered on time. Network
latency is defined as the duration of time it takes for a
frame to pass through a network.

• The output queues sizes which allow us to dimension
the frame loss caused by the congestions.

The objective of this paper is to present and shortly com-
pare three methods for the evaluation of end-to-end delays:
network calculus, queuing networks simulation and model
checking.

In a first step, we present main characteristics of an
AFDX network and end-to-end traffic. In a second step, we
compare the network calculus approach on a realistic exam-
ple. In a third step, we compare on a simpler example the
two previous approaches with a model checking approach.

2. The AFDX network main characteristics

In this section, we present main characteristics of the net-
work architecture and the traffic that flows on the network.

2.1. AFDX network architecture

Avionics Full Duplex Switched Ethernet is a static net-
work (802.1D tables are statically set up and no spanning
tree mechanism is implemented). Flows are statically iden-
tified in order to obtain a predictable deterministic behavior
of the application on the network architecture.

An example network architecture is depicted on figure
1. It corresponds to a test configuration provided by Airbus
for a previous study [22]. It is composed of several inter-
connected switches. There is at most 24 ports per switch
(8 on this example). There are no buffers on input ports
and one FIFO buffer for each output port. The inputs and
outputs of the networks are called End Systems (the little
circles on figure 1). Each End System is connected to ex-
actly one switch port and each switch port is connected to at
most one End System. Links between switches are all full
duplex. On figure 1, the values on End Systems indicates
number of flows that are dispatched between End Systems.
Number of input and output End Systems per switch are not
specified on figure 1.

2.2. End-to-end traffic characterization

The Virtual Link is the basis of the Avionics Switched
Ethernet protocol. As defined by ARINC-664, Virtual Link
(VL) is a concept of virtual communication channels; It has
the advantage of statically defining the flows which enters
the network [9].

S1

S2

820113

113 821

S3S8

S4 S7

S6

S5

66 358 132 1156

143 1207 95 457 160 857

142 708

Figure 1. AFDX network architecture

End-Systems exchange Ethernet frames through VL.
Switching a frame from a transmitting to a receiving End
System is based on a VL (deterministic routing). The Vir-
tual Link defines a logical unidirectional connection from
one source End-system to one or more destination End sys-
tems. It is a path with multicast characteristic. Figure 2
shows an example of a multicast Virtual Link, considering
the network architecture of figure 1. Its source End System
is an input of switch S1 and its destination End Systems are
outputs of switches S8, S3, S4 and S7. This VL includes the
four paths S1-S8, S1-S3, S1-S8-S4 and S1-S8-S4-S7 (they
are depicted as plain lines on figure 2).

S3S8

S4 S7

S6

S5S2

S1
src dest1 dest2

dest3 dest4

Figure 2. A multicast Virtual Link

The routing of each VL is statically defined. Only one
End System within the Avionics network can be the source
of one Virtual Link, (i.e., Mono Transmitter assumption).

The objective is to provide a logical isolation of VL: a
given maximum bandwidth is allocated to each VL. Regard-
less of the attempted utilization of a VL by one application,
the available Bandwidth on any other VL is unaffected.

A virtual Link is defined by the following parameters :

• the name of the VL,

• the Bandwidth Allocation Gap (BAG) of the VL,
which corresponds to the minimum delay between the
emission of two consecutive frames of the VL by its
source End System,

Proceedings of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06)

0-7695-2619-5 /06 $20.00 © 2006 IEEE
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 21,2020 at 15:56:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 12: Industrial-sized network topology. The figure is taken
from [21].

0 1000 2000 3000 4000 5000 6000 7000

source-destination pairs

0

50

100

150

200

250

300

D
e
la

y
s
 (

m
s
)

Delay bounds obtained using the strict service curve of Boyer et al

Delay bound obtained using the correction term of Soni et al

Delay bounds obtained using Corollary 3

Fig. 13: Delay bounds of the industrial case for all source-
destination pairs in the system. The delay bounds obtained with
Corollary 4 are visually indistinguishable from those obtained
with Corollary 3 and are not displayed. Source-destination paths
are ordered by values of Boyer’s bound.

the links are equal to c = 100 Mb/s, and every switch Si
has a switching latency equal to 16µs. We find that each
switch has 6 input and 6 output end-systems. Three classes
of flows are considered: critical flows, multimedia flows, and
best-effort flows. There is one DRR scheduler at every switch
output port with n = 3 classes. At every DRR scheduler, the
quanta are 3070 bytes for the critical class, 1535 bytes for the
multimedia class, and 1535 bytes for the best-effort class. 128
multicast flows, with 834 destinations, are critical; they have a
maximum packet-size equal to 150 bytes and their minimum
packet arrival time is between 4 and 128ms. 500 multicast
flows, with 3845 destinations, are multimedia and their class
has a quantum equal to 1535 bytes; they have a maximum
packet-size equal to 500 bytes; and their minimum packet-
arrival time is between 2 and 128ms. 266 multicast flows,
with 1733 destinations, are best-effort; they have a maximum
packet-size equal to 1535 bytes; and their minimum packet
arrival time is between 2 and 128ms. For every flow, the
path from the source to a destination can traverse at most
4 switches. Specifically, 1797, 2787, 1537, and 291 source-

0 5 10 15 20 25 30 35 40 45

Maximum link utilization (%)

0

10

20

30

40

50

60

70

80

90

R
e

la
tiv

e
 im

p
ro

ve
m

e
n

t
o

f
d

e
la

y
b

o
u

n
d

s
o

b
ta

in
e

d
 w

ith
 C

o
ro

lla
ry

 3
 c

o
m

p
a

re
d

 t
o

 t
h

o
se

 o
f

B
o

ye
r

e
t

a
l (

%
)

Maximum

75th percentile

Median

25th percentile

Minimum

Fig. 14: Relative improvements of delay bounds obtained with
Corollary 3 compared to those of Boyer et al. for one random
configuration of the industrial case, when only varying the link
rate c ∈ [36.8, 1600] Mb/s to simulate different workloads (the
rate c cannot be less than 36.8 Mb/s as the delay bound of
some source-destination pairs become unbounded.). For each
choice of the link rate c, the relative improvements for all source-
destination pairs are computed; then, the maximum, the 75th
percentile, the median, the 25th percentile, and the minimum
of them are plotted. The link between S4 and S3 achieves the
maximum utilization.

destination paths have 1, 2, 3, and 4 hops, respectively. We
choose the paths randomly and satisfy all these constraints.

Due to the limited expressiveness of the language used by
the RTaW online tool, we could not implement the industrial-
size network there. Therefore, we used MATLAB, which
has the required expressiveness, but does not have support
for min-plus computations;hence, we could only implement
Corollaries 3 and 4. The obtained delay bounds and run-times
(103 and 106 minutes, respectively, on a 2.6 GHz 6-Core Intel
Core i7 computer) are almost the same for both Corollaries.
We also computed the delay bounds obtained with the strict
service curve of Boyer et al. and with the correction term
of Soni et al. In all cases, and as in [7], the arrival curve
used for bounding the input of a class at a switch incorporates
the effects of delay bounds computed upstream, as well as
grouping (line shaping) and offset (Section II-D); and the
offsets are such that they create maximum separation, as with
[7]. We find that our bounds significantly improve upon the
existing bounds, even the incorrect ones (Fig. 13). Also, we
vary the link rate c to simulate different workloads (Fig. 14).

VIII. CONCLUSION

The method of the pseudo-inverse enables us to perform a
detailed analysis of DRR and to obtain strict service curves
that significantly improve the previous results. Our results
use the network calculus approach and are mathematically
proven, unlike some previous delay bounds that we have
proved to be incorrect. Our method assumes that the aggregate
service provided to the DRR subsystem is modelled with a
strict service curve. Therefore it can be recursively applied
to hierarchical DRR schedulers as found, for instance, with
class-based queuing.

182

REFERENCES

[1] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3,
pp. 375–385, 1996.

[2] L. Lenzini, E. Mingozzi, and G. Stea, “Aliquem: a novel drr imple-
mentation to achieve better latency and fairness at o(1) complexity,” in
IEEE 2002 Tenth IEEE International Workshop on Quality of Service
(Cat. No.02EX564), 2002, pp. 77–86.

[3] M. Boyer, G. Stea, and W. M. Sofack, “Deficit round robin with
network calculus,” in 6th International ICST Conference on Performance
Evaluation Methodologies and Tools, 2012, pp. 138–147.

[4] S. S. Kanhere and H. Sethu, “On the latency bound of deficit round
robin,” in Proceedings. Eleventh International Conference on Computer
Communications and Networks, 2002, pp. 548–553.

[5] D. Stiliadis, “Traffic scheduling in packet-switched networks: Analysis,
design, and implementation,” Ph.D. dissertation, 1996, aAI9637506.

[6] L. Lenzini, E. Mingozzi, and G. Stea, “Full exploitation of the deficit
round robin capabilities by efficient implementation and parameter
tuning.”

[7] A. Soni, X. Li, J. Scharbarg, and C. Fraboul, “Optimizing network
calculus for switched ethernet network with deficit round robin,” in 2018
IEEE Real-Time Systems Symposium (RTSS), 2018, pp. 300–311.

[8] S. M. Tabatabaee, J. Y. Le Boudec, and M. Boyer, “Interleaved weighted
round-robin: A network calculus analysis,” in 2020 32nd International
Teletraffic Congress (ITC 32), 2020, pp. 64–72.

[9] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer Science & Business
Media, 2001, vol. 2050.

[10] C. S. Chang, Performance Guarantees in Communication Networks.
New York: Springer-Verlag, 2000.

[11] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. Wiley-ISTE.

[12] K. Lampka, S. Bondorf, and J. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains,” in
2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2016, pp. 313–318.

[13] J. Liebeherr, “Duality of the max-plus and min-plus network calculus,”
Foundations and Trends in Networking, vol. 11, no. 3-4, pp. 139–282,
2017.

[14] “RealTime-at-Work online Min-Plus interpreter for Network Cal-
culus,” https://www.realtimeatwork.com/minplus-playground, accessed:
year-month-day.

[15] A. Charny and J.-Y. Le Boudec, “Delay bounds in a network with
aggregate scheduling,” in Quality of Future Internet Services. Springer,
2000, pp. 1–13.

[16] D. B. Chokshi and P. Bhaduri, “Modeling fixed priority non-preemptive
scheduling with real-time calculus,” in 2008 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications, Aug 2008, pp. 387–392.

[17] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), vol. 4, May 2000, pp. 101–104
vol.4.

[18] A. Mifdaoui and T. Leydier, “Beyond the Accuracy-Complexity
Tradeoffs of CompositionalAnalyses using Network Calculus for
Complex Networks,” in 10th International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (co-located
with RTSS 2017), Paris, France, December 2017, pp. pp. 1–8. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01690096

[19] J. Grieu, “Analyse et évaluation de techniques de commutation ethernet
pour l’interconnexion des systèmes avioniques,” September 2004.
[Online]. Available: https://oatao.univ-toulouse.fr/7385/

[20] A. Bouillard, “Trade-off between accuracy and tractability of network
calculus in fifo networks,” 2020.

[21] H. Charara, J. . Scharbarg, J. Ermont, and C. Fraboul, “Methods for
bounding end-to-end delays on an afdx network,” in 18th Euromicro
Conference on Real-Time Systems (ECRTS’06), 2006, pp. 10 pp.–202.

183

