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Abstract—In time-sensitive networks, bounds on worst-case
delays are typically obtained by using network calculus and
assuming that flows are constrained by bit-level arrival curves.
However, in IEEE TSN or IETF DetNet, source flows are
constrained on the number of packets rather than bits. A common
approach to obtain a delay bound is to derive a bit-level arrival
curve from a packet-level arrival curve. However, such a method
is not tight: we show that better bounds can be obtained by
directly exploiting the arrival curves expressed at the packet
level. Our analysis method also obtains better bounds when flows
are constrained with g-regulation, such as the recently proposed
Length-Rate Quotient rule. It can also be used to generalize some
recently proposed network-calculus delay-bounds for a service
curve element with known transmission rate.

Index Terms—Time-sensitive networks, delay bound, arrival
curve, packet-level constraint, bit-level constraint, network cal-
culus.

I. INTRODUCTION

Time-sensitive networks provide real-time guarantees for
applications such as avionics, automobiles, industrial automa-
tion, etc [1]–[6]. IETF Deterministic Networking (DetNet) [7]
and IEEE Time-Sensitive Networking (TSN) [8] formalize the
requirements and provide standardization for such networks.
One of the main goals in time-sensitive networks is to provide
guarantees on worst-case delay, and not average delay. In
order to obtain such guarantees, flows are assumed to be
regulated at the sources. A classical form of source regulation
is the bit-level arrival curve constraint: a flow satisfies a bit-
level arrival-curve constraint α() if the number of bits over
any time interval of any duration t is upper bounded by
α(t) [9], [10]. The celebrated token bucket constraint with
rate r and burst b is an example, with α(t) = rt + b for
t > 0. Formally proven delay bounds can be obtained by
using network calculus, which combines arrival and service
curves [9], [10]. A service curve is an abstraction that conveys
information on the minimum service provided by a system (see
Section III). Then the classical network-calculus delay-bound
is obtained by taking the horizontal deviation of the arrival
and service curves [9, Section 3] [10, Section 3.1.2]. This
delay bound can be improved for some systems with known
transmission rate [11].

However, in time-sensitive networks, flow regulation at
sources is often expressed in terms of number of packets rather
than number of bits [12] [13, Section 35.2.2.8.4]; for example
in TSN, the number of packets observed within any fixed class
measurement interval (CMI) is upper-bounded by a constant

value. To obtain delay bounds for such flows, network calculus
is often used [14], for which a bit-level characterization is
required. Hence, a common approach is to derive a bit-level
arrival-curve from the packet-level constraint and then apply
network calculus [15], [16]. However, as we show in Table II
and Section VIII, this can lead to delay bounds that can be
improved. Indeed, our main result, in Theorem 1, is a novel
delay bound for flows regulated with packet-level constraints,
which improves on the one that is obtained by deriving a bit-
level arrival-curve from the packet-level regulation constraint.
We show that the obtained delay bound is tight at least for
c-Lipschitz [17] service curves where c is the physical line-
speed (Theorems 2 and 3).

Our method uses a novel modelling of packet-level con-
straint with g-regulation (Proposition 2). The concept of g-
regulation was introduced by C.S. Chang [18] as an alternative
to bit-level arrival-curve and uses max-plus algebra, whereas
results for bit-level arrival-curves tend to use min-plus algebra.
Our improvement in the delay bound is made possible by
combining min-plus representation of service curves and max-
plus representation of the input traffic to obtain a bound on
queuing delay (Lemma 1).

As a by-product of our method of proof, we also obtain
delay bounds for flows with g-regulation, such as Length-
Rate Quotient (LRQ) [19], that share a FIFO system with
known service curve (Theorem 4). This bound improves on
the one obtained by deriving a bit-level arrival-curve from g-
regulation and then using the state-of-the-art network calculus
bound. Moreover, it generalizes the results by [19] that was
specifically applicable to flows with LRQ constraints and
priority queues with constant rate servers. Last, the state-of-
the-art network-calculus delay-bound for bit-level arrival-curve
can also be generalized to a wider family of service curves than
rate-latency ones (Theorem 5).

The rest of the paper is organized as follows. Section II
presents the state-of-the-art and related works. Section III
includes the system model, notation, and the definition of the
considered flow regulation constraints. Section IV presents the
relations among different regulation constraints. In Section V,
we present the main contribution of this paper, namely, novel
delay bounds for flows with packet-level constraints, and
we show that these bounds are tight. Section VI gives a
generalization of the existing delay bounds for flows with g-
regularity constraint and bit-level arrival-curve, as a by-product
of our method of proof in Section V. Section VII shows that
the best delay bound for a given flow is obtained by directly
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applying the theorem corresponding to its initial constraint.
Section VIII provides a numerical illustration of the theorems
presented in this paper and Section IX concludes the paper.
The Appendix gives proofs.

II. RELATED WORKS

The classical network-calculus proves delay bounds for a
FIFO system with bit-level arrival and service curves [9],
[10]. Specifically, for a flow with bit-level arrival-curve α
that enters a FIFO system with service curve β, the bound is
obtained by taking the horizontal deviation between the two
curves, i.e., h(α, β), which is defined in [9, Section 3.1.11]
and recalled in Section III. For example, when a flow has leaky
bucket arrival curve α(t) = rt + b and the FIFO system has
rate-latency service-curve β(t) = max (R(t− T ), 0), we have
h(α, β) = T + b

R provided that r ≤ R. This bound is tight
if only arrival and service curves are known. However, we
often have more information, specially in the context of time-
sensitive networks, e.g., TSN schedulers with Credit-Based
Shapers [20] and Deficit Round Robin (DRR) schedulers [21]:
when a packet starts its transmission, it is transmitted with full
line rate. Recently, such information was exploited for rate-
latency service-curves to provide a delay bound that improves
the classical network-calculus bound [11]; more precisely, the
classical network-calculus bound is reduced by Lmin

(
1
R −

1
c

)
,

where c is the physical line-rate and Lmin is the minimum
packet length of the input traffic.

While rate-latency service-curves are commonly used in the
literature, they may not provide a perfect characterization of
a system. A number of works provide more complex service
curves that in turn leads to better delay bounds. In [21], the
authors obtained a non rate-latency service-curve for Deficit
Round-Robin (DRR) schedulers that can incorporate the ar-
rival curves of the interfering flows. Such non rate-latency
service-curves are obtained as well for Weighted Round-Robin
(WRR) [10, Section 8.2.4] and Interleaved WRR [22]. Hence,
the improvement of [11] does not apply to these service curves.
In this paper, we generalize the results of [11] to improve delay
bounds for non rate-latency service-curves. Furthermore, we
improve the bounds in [11] when the flows have packet-level
constraints.

A number of other works focus on improving the arrival
curves of the flows in time-sensitive networks by taking
advantage of input-line shaping effect. For example, for a flow
with leaky-bucket arrival curve α(t) = rt + b that passes a
physical line with rate c, we can obtain a better arrival curve
α′(t) = min(rt + b, ct). In [15], [16], the authors study a
TSN network and assume the input traffic has packet-level
constraint [13, Section 35.2.2.8.4]. To obtain delay bounds,
they first derive a bit-level arrival-curve from the packet-level
constraint; then they exploit input-line shaping to improve
the obtained arrival curve. Finally, they use network calculus
to obtain delay bounds. The improvement by the input-line
shaping effect is complementary to the improvements in this
paper.

Recently, LRQ was introduced in the context of interleaved
regulators in [19] as a per-flow regulation constraint that is

TABLE I: List of notation.

Term Description

An The arrival time of packet n to the FIFO system

c The transmission rate of the output link

Dn The departure time of packet n from the FIFO system

h(w′, w) The horizontal deviation from function w′ to function w
(Section III-F)

K The maximum number of packets in each interval of TSN/Det-
Net traffic constraint

Lmax
f Maximum packet length of flow f

Lmin
f Minimum packet length of flow f

ln The length of packet n in bits

N(t) The cumulative number of packets arrived at the FIFO system
until time t (excluded)

Qn The start of transmission of packet n from the FIFO system

R Rate of service curve, when β is rate-latency

T Latency of service curve, when β is rate-latency

β The service curve of the FIFO system

∆A The response time bound on a flow with bit-level arrival-curve

∆AG The response time bound on a flow with g-regularity constraint
competing with an aggregate of flows with bit-level arrival-
curve

∆G The response time bound on a flow with g-regularity constraint

∆pkt The response time bound on a flow with packet-level arrival-
curve

τ The interval duration in TSN/DetNet traffic constraint

N The set of positive integers, i.e., {1, 2, . . . , }
R+ The set of non-negative real numbers, i.e., [0,∞)

F0
inc The set of wide-sense increasing functions such that ∀w ∈

F0
inc : w(0) = 0

w+ The right limit of function w (Section III-F

w− The left limit of function w (Section III-F

w↓ The lower pseudo-inverse of function w (Section III-B)

w↑ The upper pseudo-inverse of function w (Section III-B)

dxe The ceiling of x

bxc The floor of x

[x]+ max{x, 0}
◦ The function-composition operator, i.e., (f ◦g)(x) = f(g(x))

1{C} It is equal to 1 when condition C is true; otherwise it is 0.

simpler to implement than token-bucket. LRQ is in fact a
specific case of Shifted-Rate Regulator (when the delay term
is set to zero) [18, Section 6.2.1], which belongs to the
family of g-regulation. [19] obtains delay bounds for flows
with LRQ constraint within constant-rate servers and strict-
priority queuing. This analysis was extended for guaranteed-
rate servers [23]. Unlike the previous works, our results on
g-regulated flows cover the whole family of g-regulation (i.e.,
are not limited to LRQ constraint) and apply to a broader class
of network nodes (i.e., nodes with arbitrary service curves).

III. SYSTEM MODEL AND GENERAL PREREQUISITE

In this section, we first describe the systems to which our
analysis applies. Second, we recall the definition of pseudo-
inverse functions as they are used throughout the paper. Third,
we give a description of the flow regulation constraints con-
sidered in this paper, i.e., bit-level arrival-curve, g-regulation
and packet-level arrival-curve. Finally, we give a summary
of necessary mathematical definitions required to follow the
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Fig. 1: The considered FIFO system.

content of the paper. For the reader’s convenience, Table I
gives the notation used throughout the paper.

A. System Model

We study a FIFO system with a queue and a transmission
link, as in Fig. 1. Each queue is shared among a number of
flows. Upon arrival, packets of different flows enter the queue
and are stored in FIFO order. A scheduler decides when the
packet at the head of the queue is selected for transmission.
The scheduler typically arbitrates between this queue and other
queues (not shown), therefore the packet at the head of the
queue may have to wait even if there is no packet of this queue
in transmission. When the packet at the head of this queue is
selected for transmission, it is transmitted at a constant rate c
until it is completely transmitted, i.e., there is no preemption.

Every flow is assumed to be constrained by either bit-level
arrival curve (Section III-C), g-regulation (Section III-D) or
packet-level arrival curve (Section III-E). For each flow f , let
Lmin
f and Lmax

f denote the minimum and maximum packet
lengths, in bits. We also assume that the total flow of all
incoming packets is packetized, i.e., we consider that all bits
of any packet arrive at the same time instant.

Let An be the arrival time of packet n to the FIFO system,
where the numbering of packets is by order of arrival and Qn
be the time at which packet n is selected for transmission. The
FIFO assumption means that Qn ≤ Qn+1. We call Qn − An
the queuing delay of packet n in the FIFO system. Let ln be
the length in bits of packet n and assume that it belongs to
flow f , so that Lmin

f ≤ ln ≤ Lmax
f ; then packet n leaves the

system at time Dn = Qn+ ln
c . We call Dn−An the response

time of the FIFO system for packet n.
We assume that the scheduler is such that the FIFO system

offers to the total flow of all incoming packets a service
curve β. Formally, this is defined as follows [9, Section
1.3]. Let F0

inc be the set of wide-sense increasing functions
w : [0,+∞)→ [0,+∞] such that w(0) = 0. Let A,D ∈ F0

inc

be such that A(t) [resp. D(t)] denotes the cumulative number
of bits arrived in [resp. departed from] the system until time
t (excluded). A function β ∈ F0

inc is a service curve for the
system if for every time t ≥ 0 there exists a time s ≤ t such
that

D(t) ≥ β(t− s) +A(s). (1)

A service curve characterization is available for many systems,
see for example [24]–[28] Rate-latency service-curves are
functions of the form β(t) = R[t− T ]+ with R, T being the
rate and latency terms. A system that offers a rate-latency
service curve can be interpreted as behaving, for the flows of

interest, as if it would be a server with rate R and vacation T .
The rate R is the rate guaranteed to the flow and is typically
less than the line rate c. Rate-latency service curves are often
used because of their simplicity, but better delay bounds can
also be obtained with more complex service curves [21].

B. Pseudo-inverse Functions

For w ∈ F0
inc, the lower and upper pseudo-inverses are

respectively w↓ and w↑, and are defined as:

w↓(x)
def
= inf{s ≥ 0 | w(s) ≥ x}, (2)

w↑(x)
def
= sup{s ≥ 0 | w(s) ≤ x}. (3)

Fig. 2 illustrates the pseudo-inverse functions and the differ-
ences between them. By [29, Section 10.1]:
• w↓ is non-decreasing and left continuous.
• w↑ is non-decreasing and right continuous.

𝑥!

𝑤 𝑦 = 𝑥

𝑥

𝑦

𝑤↓

𝑥" 𝑦!

𝑦!

𝑥!

𝑥"

𝑥!

𝑤 𝑦 = 𝑥

𝑥

𝑦

𝑤↑

𝑥" 𝑦!

𝑦!

𝑥!

𝑥"

Fig. 2: Illustration of pseudo-inverse functions of a monotoni-
cally increasing function w. The pseudo-inverse functions are
obtained by flipping the graph of w around the line y = x. The
resulting graph does not correspond to a function as the plateau
part of w i.e., x1 to x2, causes ambiguity. With the lower
pseudo-inverse (left figure), w↓, the ambiguity is resolved by
selecting the infimum, i.e., w↓(y1) = x1. With the upper
pseudo-inverse (right figure), w↑, the ambiguity is resolved
by selecting the supremum, i.e., w↑(y1) = x2.

C. Bit-level Arrival-Curve

The bit-level arrival-curve constraint is the most widespread
form of traffic regulation [9]. Consider a left-continuous func-
tion A ∈ F0

inc, where A(t) denotes the cumulative number of
bits observed on the flow of interest until time t (excluded). We
say that the flow is constrained by the bit-level arrival-curve
α ∈ F0

inc if and only if

A(t)−A(s) ≤ α(t− s) for all t ≥ 0 and s ∈ [0, t]. (4)

For a packetized flow, it is shown in [30] that this is equivalent
to

n∑
k=m

lk ≤ α+(An −Am) for all m,n ∈ N,m ≤ n (5)

where α+ is the right-limit of α, and this is also equivalent to

An −Am ≥ α↓(
n∑

k=m

lk) for all m,n ∈ N,m ≤ n. (6)
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By [9, Lemma 1.2.1], if α is a bit-level arrival-curve for
a flow, then so is its left limit, i.e., α−. Also, since input
is packetized, α+(0) is an upper bound on the size of any
packet. Therefore, in the rest of this paper, we assume that
α is left-continuous and α+(0) ≥ Lmax. Frequently used bit-
level arrival-curves are [9, 1.2.2]:
• the token-bucket (or leaky-bucket) arrival-curve with rate
r and burst b, defined by α(t) = rt+ b; t > 0, α(0) = 0;

• the staircase function with burst b and interval τ defined
by α(t) = bd tτ e. It expresses the constraint that the flow
has at most b bits within any interval of duration τ .

D. g-regulation

The g-regulation constraint was introduced in [18]; it spec-
ifies that the time inter-spacing between packets is lower
bounded by a left-continuous function g ∈ F0

inc [18]1A
packetized input has g-regulation constraint if and only if for
any packet indices m,n, where m ≤ n:

An −Am ≥ g

(
n−1∑
k=m

lk

)
. (7)

Note the difference between the bit-level arrival-curve in (6)
and the g-regulation in (7): for the g-regulation the length of
the last packet, i.e., ln, does not play a role (7) while it is
included in (5). Since the argument of the function g only
takes values in a discrete set containing sums of packet sizes,
we assume g is left continuous at each point in this set.

Shifted-Rate Regulation [18, Section 6.2.1] is a type of g-
regulation with g(x) = 1

r [x− d]+, where r is the regulation
rate and d is the regulation delay, i.e., the constraint is

An −Am ≥
1

r

[(
n−1∑
k=m

lk

)
− d

]+
,∀m,n ∈ N,m ≤ n. (8)

Length-Rate Quotient (LRQ), introduced by [19], is a traffic
regulation which specifies the minimum interspacing between
two consecutive packets as a function of a regulation rate r
and the length of the earlier packet. i.e. the constraint is

An −An−1 ≥
ln−1
r
, ∀n ∈ N, n ≥ 2. (9)

By LRQ, the arrival of packet n is constrained by the reg-
ulation rate, the arrival time and the length of the previous
packet; the fact that there is dependency on only the last
packet, renders the implementation of LRQ very simple. It is
easy to see that, when d = 0, (8) is equivalent to (9), namely,
LRQ is shifted-rate regulation with d = 0; therefore, LRQ is
a form of g-regulation with g(x) = x

r .

E. Packet-level Arrival-Curve

The packet-level arrival-curve is mainly used in the
context of IEEE TSN and IETF DetNet and expresses
traffic constraints at the packet level. More formally,
consider a left-continuous wide-sense increasing function
N : R+ → N ∪ {0}, where N(t) is the cumulative number of

1The original g-regularity in [18] uses functions defined on N∪ {0} but it
is simpler to consider functions defined on R+.

fixed interval
(𝜏, 𝐾)

sliding interval
(𝜏, 𝐾)

𝐾 𝐾 𝐾 𝐾 𝐾
𝜏

𝐾 − 2𝐾
1 1

𝜏

𝐾 − 1

𝜏
𝐾

𝜏 𝜏

𝜏 2𝜏 3𝜏 (𝑖 + 1)𝜏𝑖𝜏

Fig. 3: The two interpretations of TSN and DetNet interval.

packets observed on a flow of interest until time t (excluded).
Then, we say that the flow has a packet-level arrival-curve
αpkt : R+ → N, αpkt(0) = 0, if and only if

N(t)−N(s) ≤ αpkt(t−s), for all t ≥ 0 and s ∈ [0, t]. (10)

Similarly to the bit-level arrival-curve constraint, (10) is equiv-
alent to:

n−m+1 ≤ α+
pkt(An−Am) for all m,n ∈ N,m ≤ n. (11)

It is known that an arrival curve can always be assumed to
be sub-additive (i.e. satisfy αpkt(s+ t) ≤ αpkt(s) +αpkt(s)),
since otherwise it can be replaced by its sub-additive closure
[9]. Also, following the same steps as the proof of [9,
Lemma 1.2.1], we can prove that if αpkt is a sub-additive
packet-level arrival-curve for a flow, then so is its left limit
α−pkt. Also, since the input is packetized, α+

pkt(0) gives an
upper bound on one packet. Therefore, in the rest of this
paper, we assume that αpkt is sub-additive, left continuous
and α+

pkt(0) ≥ 1.
In IEEE TSN the traffic specifications for a flow is defined

as [13, Section 34.6.1]:
“... during each class measurement interval, it [a
source] can place up to MaxIntervalFrames data
frames, each no longer than MaxFrameSize into that
stream’s queue.”

Similarly, the traffic specification in IETF DetNet allows
packet level constraint [12, Section 5.5] by the attributes “In-
terval” as the period of time in which the traffic specification
is specified and “MaxPacketsPerInterval” as the maximum
number of packets that a source transmits in one Interval.

By the above specifications, the interval (i.e. class mea-
surement interval in TSN or Interval in IETF DetNet) can
be interpreted differently as seen in Fig. 3:

1) Sliding interval (τ,K): the number of packets is limited
by K =MaxIntervalFrames (or MaxPacketsPerInterval)
at any sliding interval of duration τ .

2) Fixed interval (τ,K): the number of packets is limited
by K =MaxIntervalFrames (or MaxPacketsPerInterval)
at any reference interval of duration τ ; the reference
intervals are consecutive and non-overlapping.

The first interpretation, sliding interval (τ,K), is equivalent
to

N(t+ τ)−N(t) ≤ K; ∀t ≥ 0, (12)

which is also equivalent to saying that the flow has a packet-
level arrival-curve given by

αpkt(t) = Kd t
τ
e. (13)
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This is a staircase packet-level arrival-curve with burst equal
to K packets and period τ . It is easy to verify that it is sub-
additive and left-continuous. Applying the right limit of (13)
into (11), (12) is equivalent to the following for any packet
indices m,n, m ≤ n:

n−m+ 1 ≤ KbAn −Am
τ

c+K. (14)

The second interpretation, fixed interval (τ,K), is equivalent
to saying that there exists some offset θ such that:

N(θ) = N(0) = 0,

N(θ + (i+ 1)τ)−N(θ + iτ) ≤ K; ∀i ∈ N. (15)

As shown in Lemma 5 in Appendix A, the second interpreta-
tion, fixed interval (τ,K), implies a packet-level arrival-curve
with,

αpkt(0) = 0, αpkt(t) = Kd t
τ
e+K : t > 0, (16)

It is easy to verify that this function is sub-additive and left-
continuous. However, the converse does not hold, i.e., it is
not true that all flows that have the packet-level arrival curve
in (16) satisfy fixed interval (τ,K) (because such an arrival
curve allows 2K packets in an interval of duration less than
τ ). Nonetheless, we show in Section V that the delay bound
obtained using the packet-level arrival-curve in (16), is tight
for flows with the fixed interval (τ,K) regulation constraint.

Another form of packet-level regulation found in the liter-
ature is the token-bucket packet-level constraint [30], which
limits the number of packets within any time interval t to
ρt+B, where ρ > 0 and B ≥ 1 are respectively the packet rate
and burst. This constraint enjoys the superposition property,
i.e., for an aggregation of flows each with such constraint,
the superposition is constrained by a token-bucket packet-
level constraint with ρ and B equal to the sum of the packet
rates and bursts of the flows respectively. Such a constraint is
equivalent to the following packet-level arrival-curve:

αpkt(0) = 0, αpkt(t) = dρt+B − 1e : t > 0. (17)

It can be easily verified that this function is sub-additive and
left-continuous. Now, by (11), for any packet indices m,n,
where m ≤ n, (17) is equivalent to:

n−m+ 1 ≤ dρ(An −Am) +B − 1e. (18)

The (λ, ν)-constraint introduced in [31], is equal to the token-
bucket packet-level arrival-curve with ρ = λ and B = ν + 1.
The staircase packet-level arrival-curve in (11) implies a token-
bucket packet-level arrival-curve with ρ = τ

K , B = K.

F. Additional Definitions

For two functions w,w′ ∈ F0
inc, the horizontal deviation

from w′ to w is defined as [9] :

h(w′, w)
def
= sup

t≥0
{w↓ (w′(t))− t}. (19)

See Fig. 4.

𝑤
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Fig. 4: The horizontal deviation from w′ to w.
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Fig. 5: A c-lipschitz function w (left, DRR service curve in
[21]) and a non c-lipschitz function w′ (FIFO residual service
curve in [10, Section 7.3.1]). The slope of the function is
within [−c, c] at any point in time for w. The function w′ is
not continuous at time θ.

A function w ∈ F0
inc is called c-Lipschitz (for c ≥ 0) if

∀t1, t2 ∈ R+ [17, Section 41.5]:

|w(t2)− w(t1)|≤ c|t2 − t1|. (20)

A c-Lipschitz function is necessarily continuous and the slope
of the function is within [−c, c] at any point in time. Fig. 5
shows examples of a c-lipschitz and non c-lipschitz functions.

For w ∈ F0
inc, w+ and w− are the right and left limits,

defined as:

∀x ∈ R+ : w+(x) = lim
ε→0
ε>0

w(x+ ε), (21)

∀x ∈ R+ : w−(x) = lim
ε→0
ε>0

w(x− ε). (22)

IV. RELATIONS AMONG FLOW REGULATIONS

We have seen various families of traffic regulations in Sec-
tion III. We can find regulation-specific toolbox for delay anal-
ysis, e.g., [9], [10] for bit-level arrival curves. The immediate
question is whether there is a relation among these regulation
types. Such relations can open up new opportunities to apply
the existing toolbox of one regulation type to another, that may
lead to delay improvements, as we will see in Section V. The
goal of this section is to present such derivations between the
regulation types.

In the next proposition, we present a relation between g-
regularity and bit-level arrival-curve. The derivation of bit-
level arrival-curve from g-regularity already exists in literature
[18] and we put it here for completeness.

Proposition 1. Consider a flow f .
1) If f has a bit-level arrival-curve α(t), it also

conforms to a g-regularity constraint with
g(x) = α↓(x+ Lmin), x > 0; g(0) = 0.

2) If f conforms to a g-regularity constraint, it also has a
bit-level arrival-curve α(t) = g↓(t) + Lmax.
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3) The sequential application of items 1 and 2 or items 2
and 1 gives a regulation constraint that is weaker than
the initial one, except if all packets have the same size.

The proof is in Appendix B-A. Proposition 1 shows that
even though bit-level arrival-curve and g-regularity are two
different families of traffic constraints, they can be derived
from each other in items (1) and (2). However, item (3) shows
that when packets are of different sizes, such derivations lead
to weaker constraints than the initial traffic constraints.

Proposition 2. Consider a flow with packet-level arrival-curve
αpkt, then:

1) The flow conforms to a g-regularity constraint with:

g(x) = α↓pkt(
x

Lmax
+ 1), (23)

and to a bit-level arrival-curve constraint, α, with:

α(t) = Lmaxαpkt(t). (24)

2) The g-regularity constraint in (23) is stronger than
the bit-level arrival-curve constraint in (24); i.e., the
sequential application of (23) and then item 1 of Propo-
sition 1 gives (24) while the sequential application of
(24) and then item 2 of Proposition 1 gives a worse
constraint than (23), except if all packets have the same
size.

The proof is in Appendix B-B. By item (1), we can use
the bit-level arrival-curve and g-regularity to compute delay
bounds for flows with packet-level arrival-curves. In fact,
for TSN/DetNet traffic regulation, such bit-level arrival-curve
derivation already exists [15] and is used for delay-bound
computation. While in literature only the bit-level arrival-curve
derivation is used to obtain delay bounds, item (2) shows that
the g-regularity derivation is a stronger constraint, and it leads
to delay improvements as we will see in Theorem 1.

V. DELAY BOUNDS FOR PACKET-LEVEL ARRIVAL-CURVES

The focus of this section is to find delay bounds for flows
with packet-level arrival-curve that share a FIFO system de-
scribed in Section III. To do so, we use a novel combination of
g-regularity and bit-level arrival-curves derived from packet-
level arrival-curves. We start with a technical lemma about
queuing delay.

Lemma 1. Consider a FIFO system with service curve β ∈
F0

inc. Assume that we know some w ∈ F0
inc such that for any

two packet indices m,n, m ≤ n, we have

n−1∑
k=m

lk ≤ w(An −Am), (25)

where Am, An are packet arrival times and lk is the length
of packet k. Then, the queuing delay of the FIFO system is
bounded by h(w, β), i.e. for any packet index n:

Qn −An ≤ h(w, β)

where h is the horizontal deviation.

The proof is Appendix B-C; it combines min-plus represen-
tation of the service curve and the max-plus representation of
the input traffic in (25).

Using Lemma 1, we obtain our first result on delay bounds,
on which all delay bounds found in this paper are based.

Lemma 2. Consider a FIFO system offering a service curve β
to the aggregate of the flows sharing it. Assume that (i) flow 1
is the flow of interest and conforms to a g-regularity constraint,
and (ii) flow 2 represents the aggregate of the remaining flows
sharing the FIFO system and has bit-level arrival-curve α.
In addition, assume that as soon as a packet starts to be
transmitted, it is transmitted with rate c. Then,

(i) An upper bound on the response time of a packet with
length l of flow 1 at this FIFO system is:

∆AG(l) = h(g↑ + α+, β) +
l

c
, (26)

(ii) An upper bound on the response time of any packet of flow
1 at this FIFO system is:

∆AG = h(g↑ + α+, β) +
Lmax
1

c
. (27)

The proof is in Appendix B-D. We can now apply Lemma 2
to packet-level arrival curves and obtain the following theorem:

Theorem 1. Consider a FIFO system offering a service curve
β to the aggregate of the flows sharing it. Assume any flow
f ∈ {1, . . . ,M} has αpkt,f as packet-level arrival-curve at
the entrance of the FIFO system and has maximum packet
length Lmax

f . In addition, assume that as soon as a packet
starts to be transmitted, it is transmitted with rate c. Then,

(i) An upper bound on the response time of a packet with
length l of a flow f at this FIFO system is:

∆pkt(l) = h

(
M∑
i=1

Lmax
i α+

pkt,i − L
max
f , β

)
+
l

c
. (28)

(ii) An upper bound on the response time of any packet of
flow f at this FIFO system is:

∆pkt = h

(
M∑
i=1

Lmax
i α+

pkt,i − L
max
f , β

)
+
Lmax
f

c
. (29)

Proof. Use item 1 of Proposition 2 to derive a g-regularity
constraint for the flow of interest and a bit-level arrival-curve
for the competing flows. Then apply Lemma 2.

The delay bound in Theorem 1 improves the state-of-the-
art delay bounds at least when packet sizes are different.
Let us observe the improvement for a simple case of rate-
latency service-curves in the following example; the bounds
are summarized in Table II.

Example. Consider a FIFO system with rate-latency service-
curve β(t) = R[t−T ]+ connected to a link with transmission
rate c > R. Assume flows 1 and 2 have packet-level arrival-
curves αpkt(t) = Kb tτ c and α′pkt(t) = K ′b tτ ′ c respectively
(K,K ′ ∈ N, τ, τ ′ > 0). To avoid unbounded response time,
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we assume KLmax
1

τ +
K′Lmax

2

τ ′ ≤ R. We want to compute a delay
bound for flow 1.

The classical approach is to first derive the bit-level arrive-
curves corresponding to the two flows. By Proposition 2, they
are:

α(t) = Lmax
1 αpkt(t) = KLmax

1 b t
τ
c,

α′(t) = Lmax
2 α′pkt(t) = K ′Lmax

2 b t
τ ′
c. (30)

Then, a delay bound is computed by the classical network-
calculus bound. For rate-latency service-curves, the classical
network-calculus bound is improved by [11], which is a special
case of our result in Theorem 5 (we will see in the next
section). Our approach, however, is to consider the original
packet-level arrival-curves and directly apply Theorem 1.
Table II shows the obtained bounds for the above approaches.

Comparing the bound of Theorem 1 with the improved
version of the classical approach, we have:

∆pkt −∆A = −(Lmax
1 − Lmin

1 )

(
1

R
− 1

c

)
< 0, (31)

which implies that the bound obtained by Theorem 1 is strictly
less than the improved classical approach, except when all
packets of flow 1 are of the same size (Lmin

1 = Lmax
1 ).

TABLE II: Comparison of the delay upper-bound for packet-
level arrival-curve in the example of Section V.

Approach Delay upper-bound

Classical approach:

bit-level arrival-curve

+ classical network-calculus bound

∆NC = T +
KLmax

1 +K′Lmax
2

R

Improved approach:

bit-level arrival-curve

+ improved bound in Theorem 5

∆A = ∆NC − Lmin
1

(
1
R
− 1

c

)
Improved approach:

packet-level arrival-curve

+ new bound in Theorem 1

∆pkt = ∆NC − Lmax
1

(
1
R
− 1

c

)

The novel delay bound in Theorem 1 is derived from
Lemma 2 and thus uses g-regularity constraint and bit-level
arrival-curves derived from the packet-level arrival-curves.
Therefore, it is legitimate to wonder whether it is the best
possible bound derived from packet-level arrival curves. We
show in the following theorem that this is indeed the case.

Theorem 2. The bound of Theorem 1 is tight.
More specifically, consider a c-Lipschitz service curve β,

sub-additive left-continuous functions αpkt,f as packet-level
arrival-curves for flow f ∈ {1, . . . ,M}, with maximum packet
lengths Lmax

f , and a transmission rate c. There exists a
simulation trace of a FIFO system, shared between the M
flows, where a packet of flow 1 reaches the bound in (29) of
Theorem 1.

The proof is in Appendix B-E; it consists in build-
ing a trajectory with greedy sources, i.e. with sources for
which the cumulative packet arrival function N(t) satisfies
N(t) = αpkt(t− t0) for some offset t0.

Recall that there are two interpretations of the packet-
level regulation constraint of TSN/DetNet (Section III-E).
The former, sliding interval, is equivalent to a packet-level
arrival curve constraint; the latter, fixed interval, implies a
packet-level arrival curve constraint but is not equivalent to
it. However, as we show in the next theorem, the delay bound
obtained by using packet-level arrival-curves and Theorem 1 is
the best possible bound for flows with TSN/DetNet constraints.

Theorem 3. Consider a FIFO system offering a c-Lipschitz
service curve β to an aggregate of M flows, where, as soon
as a packet starts to be transmitted, it is transmitted with rate
c. Assume that every flow f ∈ {1, . . . ,M} conforms to either
the Sliding interval (τf ,Kf ) or the Fixed interval (τf ,Kf )
constraint of TSN/DetNet (Section III-E) and has maximum
packet size Lmax

f . For every flow f , we can derive a packet-
level arrival curve, by using (13) or (16), and apply Theorem 1
to obtain a delay bound ∆pkt

f .
Then, for every flow f and every ε > 0, there exists a

simulation trace of this system where a packet of flow f
experiences a delay in the interval [∆pkt

f − ε,∆
pkt
f ].

The proof is in Appendix B-F. The main issue here is that
a flow that conforms to Fixed interval (τ,K) has packet-level
arrival curve given by (16), but a greedy source for this arrival
curve does not satisfy Fixed interval (τ,K) (as it generates 2K
packets in one interval of duration τ ). We overcome this by
considering, for every ε > 0, a greedy source for the packet-
level arrival curve Kd [t−ε]

+

τ e + K, which does conform to
Fixed interval (τ,K).

VI. IMPROVEMENTS ON EXISTING NETWORK-CALCULUS
DELAY-BOUNDS

In this section, as a by-product of Lemmas 1 and 2, we de-
rive novel delay bounds for flows with g-regularity constraints
(Theorem 4) and bit-level arrival-curves (Theorem 5). The
obtained delay bounds for flows with g-regularity constraint
generalize the results of [19], which are specific to LRQ and
strict-priority schedulers. Similarly, for flows with bit-level
arrival-curve, our delay bounds improve on the ones obtained
by classical network-calculus and generalize the results of
[11], which are specific to rate-latency service-curves.

Theorem 4. Consider a FIFO system offering a service curve
β to the aggregate of n flows sharing it. Assume any flow
f ∈ {1, . . . ,M} has gf -regulation constraint at the entrance
of the FIFO system and has maximum packet length Lmax

f .
In addition, assume that as soon as a packet starts to be
transmitted, it is transmitted with rate c. Then,

(i) An upper bound on the response time of a packet with
length l of a flow f at this FIFO system is given as follows:

∆G(l) = h

(
M∑
i=1

g↑i +

M∑
i=1

Lmax
i 1i 6=f , β

)
+
l

c
, (32)

(ii) An upper bound on the response time of any packet of
flow f at this FIFO system is given as follows:

∆G = h

(
M∑
i=1

g↑i +

M∑
i=1

Lmax
i 1i 6=f , β

)
+
Lmax
f

c
. (33)
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The proof consists in two steps; we first take the sum of the
bit-level arrival-curves of the competing flows derived using
item 1 of Proposition 1; second, we apply Lemma 2.

For the most common form of g-regularity constraint, i.e.,
LRQ, the current available delay bound is by [19] which only
applies to strict-priority schedulers; under the same assump-
tion, Theorem 4 gives the same delay bounds as [19]. The
delay bounds presented in [19] do not apply to a vast majority
of schedulers, e.g., WRR, Interleaved WRR, and DRR. Theo-
rem 4, however, can be used to obtain delay bounds for such
scheduling mechanisms. We provide a numerical illustration
of Theorem 4 for a DRR scheduler in Section VIII-B.

Next, we present the delay bounds for flows with bit-level
arrival-curves. It follows from the definition that the bit-level
arrival-curves can be superimposed: an aggregate of flows
conforms to a bit-level arrival-curve equal to the sum of the bit-
level arrival-curves of the flows. Hence, in the next theorem,
we assume an aggregate of flows (that share a FIFO system
with the flow of interest) is constrained by one bit-level arrival-
curve constraint.

Theorem 5. Consider a FIFO system offering a service curve
β to the aggregate of the flows sharing it and such that, as
soon as a packet starts to be transmitted, it is transmitted with
rate c. Flow 1 is the flow of interest and flow 2 represents the
aggregate of the remaining flows sharing the FIFO system.
Assume that that flows 1, 2 have bit-level arrival-curves α, α′

respectively; then,
(i) an upper bound on the response time of a packet with

length l of flow 1 at this FIFO system is

∆A(l) = h(α+ + α′
+ − l, β) +

l

c
; (34)

(ii) if β is c-Lipschitz, an upper bound on the response time
of any packet of flow 1 at this FIFO system is

∆A = h(α+ α′ − Lmin
1 , β) +

Lmin
1

c
. (35)

The proof is in Appendix B-G. It consists in two steps. We
first derive the queuing delay bound for the FIFO system using
Lemma 1 and then we add the transmission time for the packet
of interests. To obtain the per-flow delay-bound in item (ii),
we take the supremum of per-packet delay-bound in item (i)
for all the range of packet lengths, i.e., [Lmin

1 , Lmax
1 ]. When

the service-curve is c-lipschitz (formally defined in (20)), the
supremum is achieved at l = Lmin

1 (in Appendix C, we show
that this does not always hold for a non c-Lipschitz service-
curve). The c-lipschitz condition in Theorem 5 implies that the
slope of the service curve is not more than the transmission
rate c at any point in time. In fact, the rate-latency service-
curves as well as the existing service-curves for the common
scheduling mechanisms in time-sensitive networks, e.g., TSN
schedulers with credit-based shapers [20], [32], DRR [21],
[25], Interleaved WRR [22], are c-lipschitz; therefore, the
bound in Theorem 5 can be applied to such systems.

Theorem 5 gives the same delay bound as [11] for rate-
latency service-curves. For a number of scheduling mech-
anisms, e.g., DRR and Interleaved WRR, the rate-latency

service-curves are not accurate; to this end, better non rate-
latency service-curves are obtained that provide more precise
characterization for these mechanisms [21], [22]. For such
non rate-latency service-curves, the delay-bound improvement
of [11] cannot be used; instead, the existing approach is to
use classical network calculus to obtain a delay bound, which
is h(α+ α′, β). This bound is improved by Theorem 5. We
provide a numerical illustration of Theorem 5 for a non rate-
latency service-curve in Section VIII-C.

VII. COMPARISON OF THE DIFFERENT BOUNDS

In sections V and VI we obtained delay bounds for flows
with various regulation types. Moreover, we showed in Sec-
tion IV that regulation types can be derived from each other.
Combining the mentioned results, we can derive a regulation
type from another and then apply the corresponding theorem,
e.g., deriving bit-level arrival-curve from g-regularity using
item (1) of Proposition 1 and then apply Theorem 5. Now,
the question is how such delay bounds are compared with the
ones obtained by directly applying the theorem to initial flow
constraint. The goal of this section is address this question.

We start with packet-level arrival-curve. Our tight delay
bound for packet-level arrival-curves in Theorem 1 uses the g-
regularity derivation of Proposition 2 for the flow of interests.
The other approach is to use bit-level derivation of packet-level
arrival-curves in Proposition 2; this is indeed the state-of-the-
art approach. We already showed in Table II that this leads to
sub-optimal delay bounds for rate-latency service-curves. The
following proposition shows that this is not accidental and is
true in general.

Proposition 3. Consider the assumptions in Theorem 1. Using
Proposition 2 we can derive a bit-level arrival-curve and,
by applying Theorem 5, obtain a delay bound ∆A

f for every
flow f . Let ∆pkt

f be the delay bound obtained by a direct
application of Theorem 1. Then ∆pkt

f ≤ ∆A
f . Furthermore, if

packets of flow f have a constant size (Lmin
f = Lmax

f ) then
∆pkt
f = ∆A

f , else ∆pkt
f < ∆A

f , in general.

The proof is in Appendix B-H. In the above, “in general”
means that we can find schedulers for which the inequality is
strict, for example when the service curve is rate-latency with
rate R < c.

Similarly, we evaluate the delay bounds achieved by de-
riving g-regularity from bit-level arrival-curve [resp. bit-level
arrival-curve from g-regularity] and then applying Theorem 4
[resp. Theorem 5]. Then, the question is whether we obtain the
same delay bounds by applying theorems 4 and 5 respectively
to the derived g-regularity constraint and bit-level arrival-
curve. The following proposition shows that the answer to this
question is negative and the obtained delay bound is generally
worse, except for flows with packets of constant size.

Proposition 4. Consider the FIFO system assume in Theo-
rem 5.

1) Assume that the flows have bit-level arrival-curves.
Then, Theorem 5 gives a better response time upper
bound than the sequential application of item 1 of



9

Proposition 1 and Theorem 4. Specifically: ∆A
f ≤ ∆G

f ;
furthermore, if packets of flow f have a constant size
(Lmin
f = Lmax

f ) then ∆A
f = ∆G

f and else ∆A
f < ∆G

f in
general.

2) Assume that the flows have g-regularity constraints.
Then, Theorem 4 gives a better response time upper
bound than the sequential application of item 2 of
Proposition 1 and Theorem 5. Specifically: ∆A

f ≤ ∆G
f ;

furthermore, if packets of flow f have a constant size
(Lmin
f = Lmax

f ) then ∆A
f = ∆G

f and else ∆G
f < ∆A

f in
general.

The proof is in Appendix B-I.
Propositions 3 and 4 indicate that the best delay bound

for a given flow is obtained by directly applying the theorem
corresponding to its initial constraint, as delay bounds obtained
from derived flow constraints are pessimistic.

VIII. NUMERICAL ILLUSTRATION

This section provides three example applications of the
theorems presented in this paper to commonly used schedulers.
To compute the delay bounds, we use the RealTime-at-Work
(RTaW) tool [33] that has efficient implementation of network
calculus operations.

A. Flows with packet-level arrival-curve

Consider a FIFO system with TSN scheduler and Credit-
based Shapers (CBSs) with per-class FIFO queuing [20]; from
highest to lowest priority, the classes are CDT, A, B, and Best
Effort (BE). The CBSs are used separately for classes A and
B. The CBS parameters idleslopes are set to 50% and 25%
of the link rate, c = 1 Gbps, respectively for classes A and
B. The CDT traffic has a token-bucket arrival curve with rate
6.4 Kbps and burst 64 Bytes. The maximum packet length of
class BE is 1.5 KB. Using the results in [20], a rate-latency
service curve offered to class A has latency TA = 12.5µs and
rate RA = 499.92 Mbps, and the one offered to class B has
TB = 36.6µs and rate RB = 249.75 Mbps. There are 5

TABLE III: Flow information for Section VIII-A.

Class A Class B
id Lmax (Bytes) period (ms) id Lmax (Bytes) period (ms)
1 1442 16 6 1438 64
2 185 4 7 619 64
3 537 16 8 773 128
4 414 4 9 459 128
5 350 8 10 592 128

periodic flows for each of classes A and B; each flow send 1
packet at each period. Table III shows the flow information.
We want to compute delay bounds for flows 1 and 6 in classes
A and B.

The state-of-the-art approach is to obtain bit-level arrival-
curve for all flows using Proposition 2; then by Theorem 5
we obtain a delay bound of 63.58 µs for flow 1 (class A) and
158.47 µs for flow 6 (class B). However, we can also directly
apply Theorem 1 to obtain delay bounds; for flows 1 and 6
we obtain 50.46 µs and 126.32 µs respectively, which shows
20% improvement in both cases.

B. Flows with g-regulation

Consider a FIFO system with aggregate queuing and DRR
arbitration policy, with n = 8 queues sharing a link with rate
c = 1 Gbps. Assume all flows have maximum packet length
of Lmax = 1.5 KB and the queues have same quantum value
Q = Lmax. Then, similarly to the previous case, we obtain a
service curve offered to any aggregate queue. Now, assume a
flow of interest, conforms to LRQ with rate r, shares a queue
with a number of other flows with LRQ regulation where the
sum of their maximum packet lengths is 5 KB. Also assume
that the minimum packet length of the flow is 100 Bytes.

We obtain a bit-level arrival-curve constraint for the flows
using Proposition 1. Then by Theorem 5 we obtain a delay
bound of 632.75 µs for the flow of interest. Using the results
of this paper, we can also directly apply Theorem 4 to
obtain delay bounds that gives 552.74 µs, which shows 12.6%
improvement.

C. Flows with bit-level arrival-curve

Consider a FIFO system with per-flow queuing and DRR
arbitration policy, with n = 16 queues sharing a link with rate
c = 1 Gbps. Assume all flows have maximum packet length
of Lmax = 1.5 KB and the queues have same quantum value
Q = Lmax. Then, by [21, Theorem 1], we obtain a service
curve offered to any queue,

β(t) = (θ ◦ ζ) (t) + min
(

[ct− 2(n− 1)(2Lmax − ε)]+ , ε
)
,

with,

θ(t) = inf
0≤s≤t

{
t− s+Qb s

(n− 1)Q
c
}

ζ(t) = [ct− (n− 1)(4Q− ε) + ε]+,

and we set ε = 1 Byte.
Consider a flow with α(t) = rt + 2Lmax and minimum

packet length of 0.5 KB. Since, the service curve is not rate-
latency, we cannot apply the improvement in [11]. Hence,
the state-of-the-art approach is to use the classical network-
calculus bound, h(α, β); it is equal to 915.88 µs. Using our
improved delay bound in Theorem 5, the delay bound is
reduced to 743.88 µs, which improves the classical network-
calculus bound by 18.8%.

IX. CONCLUSION

We presented a theory to compute delay bounds for flows
with packet-level arrival-curve, which improves the state-of-
the-art bounds. The improvement is made possible by a novel
modelling of packet-level arrival-curve with g-regularity and
bit-level arrival-curve together with exploiting the information
on the transmission rate. Our method of proof led to delay
improvement for flows with g-regularity constraint and bit-
level arrival-curve. In time-sensitive networks, this result can
open a discussion on the operation of flow re-shaping 2: even
though in such networks the traffic specification at a source
is at the packet level, flow re-shaping is performed at the

2Flow re-shaping refers to the process of recreating the arrival curve of a
flow as its source
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bit level, based on a bit-level arrival-curve derived from the
flow constraints at the source. As a result of the analysis of
this paper, using packet-level traffic re-shaping leads to better
delay bounds at the intermediate routers and switches. As
the operation of bit-level re-shaping mechanisms is mainly
based on full reception of a packet, e.g., as in IEEE802.1 Qcr
Asynchronous Traffic Shaping, an implementation of packet-
level re-shaping appear to be feasible and even simpler.
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APPENDIX A
TECHNICAL PREREQUISITES

Consider a function f ∈ Finc, then by [29, Section 10.1]
[30],

(f+)↓ = f↓, (36)

(f↓)+ = f↑, (37)

(f↑)− = f↓, (38)

(f−)↑ = f↑, (39)

∀y ∈ R+ : f(x) ≤ y =⇒ x ≤ f↑(y), (40)

∀y ∈ R+ : f(x) ≥ y =⇒ x ≥ f↓(y), (41)

where f+ is the right limit of the function f . Furthermore, by
[29, Section 10.1] [34], if f is right continuous:

f = (f↓)↑, (42)

∀w ∈ Finc : (f ◦ w)↓(x) = (w↓ ◦ f↓)(x), (43)

and if f is left continuous:

f = (f↑)↓, (44)

∀w ∈ Finc : (f ◦ w)↑(x) = (w↑ ◦ f↑)(x). (45)

Note that ◦ is the composition operator, i.e., (f ◦ w)(x) =
f(w(x)).

Lemma 3. Consider a left-continuous function f ∈ Finc. Then((
f↓
)↑)−

= f .

Proof. By (38), we have:((
f↓
)↑)−

=

(((
f↑
)−)↑)−

. (46)

Then, by (39): (((
f↑
)−)↑)−

=
((
f↑
)↑)−

. (47)

Then, by (38): ((
f↑
)↑)−

=
(
f↑
)↓

= f, (48)

where the last equality is by (44) and left-continuity of f .

Lemma 4. Let f be a wide-sense increasing and c-Lipschitz
function. Then, for x′ ≥ x, we have:

f↓ (x′)− f↓ (x) ≥ x′ − x
c

. (49)

Proof. According to the definition of Lipschitz continuity and
because f is wide-sense increasing, we have for t′ ≥ t:

f (t′)− f (t) ≥ c(t′ − t). (50)

Assume that f↓ (x′) = t′ and f↓ (x) = t. Due to Lipschitz
continuity, f is continuous. Therefore, from (2), t = f↓ (x) =
inf{s ≥ 0|f(s) ≥ x} = sup{s ≥ 0|f(s) < x} = sup{s ≥

0|f(s) ≤ x}. Thus, f (t) = x. Similarly, we can show that
f (t′) = x′. Therefore, we obtain

f↓ (x′)− f↓ (x) = t′ − t (51)

≥ f (t′)− f (t)

c
=
x′ − x
c

, (52)

which completes the proof.

Lemma 5. A flow with fixed interval (τ,K) conforms to a
packet-level arrival-curve αpkt with

αpkt(0) = 0, αpkt(t) = Kd t
τ
e+K : t > 0. (53)

Proof. First, since N(s)−N(s) = 0;∀s ≥ 0, by (10)
αpkt(0) = 0.

Next we prove the statement for t > 0. For all t > 0, there
exists some 0 ≤ t′ < τ such that

t = iτ + t′, i = d t
τ
e. (54)

Now, consider a time instant s. We cover the two cases s ≤ θ
and s > θ separately.
• 0 ≤ s ≤ θ. Then by (15) N(s) = 0. Therefore:

N(s+ t)−N(s) = N(s+ t) ≤ N(θ + t). (55)

By (54):

N(θ + t) = N(θ + iτ + t′)

= [N(θ + iτ + t′)−N(θ + iτ)]

+ [N(θ + iτ)−N(θ + (i− 1)τ)] + . . .

+ [N(θ + τ)−N(θ)] +N(θ) (56)

Using the definition of fixed interval constraint in (15),
we have:

N(θ + t) ≤ (i+ 1)K +N(θ) = (i+ 1)K (57)

Since i = d tτ e, by (55) we have:

N(s+ t)−N(s) ≤ Kd t
τ
e+K. (58)

• s > θ. Then, there exists some n ∈ N such that:

θ + nτ ≤ s < θ + (n+ 1)τ. (59)

Therefore,

N(s+ t)−N(s) ≤ N(θ + (n+ 1)τ + t)−N(θ + nτ).
(60)

By (54), the above equation gives:

N(s+ t)−N(s) ≤ N(θ + (n+ 1)τ + iτ + t′)

−N(θ + nτ) = [N(θ + (n+ i+ 1)τ + t′)

−N(θ + (n+ i+ 1)τ)]+

[N(θ + (n+ i+ 1)τ)−N(θ + (n+ i)τ)]

+ · · ·+ [N(θ + (n+ 1)τ)−N(θ + nτ)].
(61)
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Since i = d tτ e, (61) gives:

N(s+ t)−N(s) ≤ (i+ 1)K = Kd t
τ
e+K. (62)

By (58) and (58), for all s ≥ 0:

N(s+ t)−N(s) ≤ Kd t
τ
e+K = αpkt(t), (63)

which proves the lemma.

APPENDIX B
PROOFS OF THEOREMS AND PROPOSITIONS

A. Proof of Proposition 1

1) Since the flow has an arrival curve α, by (5) for any
packet index m,n such that m ≤ n, we have:

n∑
i=m

li ≤ α+(An −Am). (64)

By excluding the last packet from the left hand-side of the
inequality, we have:
n−1∑
i=m

li ≤ α+(An−Am)− ln ≤ α+(An−Am)−Lmin. (65)

We define h(t) = [t − Lmin]+ and x =
∑n−1
i=m li. Then, (65)

can be rewritten as:

x ≤ (h ◦ α+)(An −Am). (66)

Applying (41) to (66):

An −Am ≥ (h ◦ α+)↓ (x) . (67)

Since h is continuous, by (43) we have:

An −Am ≥ ((α+)↓ ◦ h↓) (x) . (68)

Applying (36), we have:

An −Am ≥ (α↓ ◦ h↓) (x) . (69)

Finally, by (2), we have h↓(x) = x+Lmin, x > 0;h↓(0) = 0.
Then, for x > 0:

An −Am ≥ α↓(x+ Lmin) = g(x), (70)

and for x = 0:

An −Am ≥ α↓(0) = 0 = g(0). (71)

2) By [ [18], Lemma 6.2.8], g↑(t)+Lmax is an arrival curve
for the flow. Since, the left limit of an arrival curve is also an
arrival curve for the flow, we have:

α(t) = lim
ε→0
ε>0

g↑(t− ε) + Lmax =
(
g↑
)−

(t) + Lmax

= g↓(t) + Lmax. (72)

The last equality is by (38).
3) Assume a flow with arrival curve α and let us first apply

item 1 and then item 2. By item 1, we can find a g-regularity
constraint:

g(x) = α↓(x+ Lmin) = (α↓ ◦ h)(x), (73)

where h(x) = x+Lmin. Now, we apply item 2 to the obtained
g-regularity constraint in (73) and derive an arrival curve α′:

α′(t) = g↓(t) + Lmax = (α↓ ◦ h)↓(t) + Lmax

=
(
(α↓ ◦ h)↑

)−
(t) + Lmax, (74)

The last equality is by (38). Due to left continuity of α↓, by
(45) we have:

α′(t) =
((
h↑ ◦

(
α↓
)↑))−

(t) + Lmax

=

[((
α↓
)↑)−

(t)− Lmin
]+

+ Lmax. (75)

Note that h↑(t) = [t − Lmin]+ = max(t − Lmin, 0). Since α
is left continuous and α(t) ≥ Lmax, by Lemma 3 we have:

α′(t) = α(t)− Lmin + Lmax. (76)

Eq. (76) shows that by applying item 1 and then item 2, the
obtained arrival curve is not the same as the initial one, i.e.,
α 6= α′, except from the case that Lmax = Lmin (when all
packets have the same length).

Let us now examine the opposite direction. Assume a flow
has g-regularity constraint. By applying item 2, we can find
an arrival curve, α:

α(t) = g↓(t) + Lmax = (h ◦ g↓)(t), (77)

where h(t) = t+Lmax. Now, we apply item 1 to the obtained
arrival curve (77) and derive a g′-regularity constraint:

g′(x) = α↓(x+ Lmin) = (h ◦ g↓)↓(x+ Lmin)

=
(
(h ◦ g↓)↑

)−
(x+ Lmin). (78)

By (45) and since h↑(x) = [x− Lmax]
+, we have:

g′(x) =
(
(g↓)↑ ◦ h↑

)−
(x+ Lmin)

=
(
(g↓)↑

)−
([x− Lmax]+ + Lmin). (79)

If g is left continuous, by Lemma 3, we have:

g′(x) = g([x− Lmax]+ + Lmin). (80)

The above equation shows that applying item 2 and then item
1 does not give the same g-regularity as the initial one, i.e.,
g 6= g′, except from the case that Lmax = Lmin (when all
packets have the same length).

B. Proof of Proposition 2

1) According to the min-plus representation of packet-level
arrival-curve in Eq. (11), for any packets m,n with m ≤ n,
we have:

n−m+ 1 ≤ α+
pkt(En − Em). (81)

Now let us multiply both sides of the inequality by Lmax:

(n−m+ 1)Lmax ≤ Lmaxα+
pkt(En − Em). (82)

For all packet indices i, it holds that li ≤ Lmax. Thus,
n∑

i=m

li ≤ Lmaxα+
pkt(En − Em). (83)
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According to (5), the flow conforms to an arrival curve
α = Lmaxαpkt.

To obtain g-regularity, we use Eq. (82) as well as the fact
that li ≤ Lmax for all packets i, and we have:

n−1∑
i=m

li + Lmax ≤ Lmaxα+
pkt(En − Em). (84)

Now, we divide the both sides by Lmax and set x :=
∑n−1
i=m li.

Then,
x

Lmax
+ 1 ≤ α+

pkt(En − Em). (85)

Using (41) and then (36):

En − Em ≥ α↓pkt(
x

Lmax
+ 1) = g(x). (86)

2) First we show that we can derive (24) using (23). By
item 1, the flow with packet-level arrival-curve αpkt conforms
to g-regularity with g = α↓pkt ◦ f , where f(x) = x

Lmax + 1.
The flow also conforms to a bit-level arrival-curve α′ that
is derived by applying item 2 of Proposition 1 to (23), i.e.,
α′(t) = g↓(t) + Lmax; then,

α′(t) = g↓(t) + Lmax =
(
α↓pkt ◦ f

)↓
(t) + Lmax

=

((
α↓pkt ◦ f

)↑)−
(t) + Lmax (87)

where the last equality is obtained by (38). Now, using (45)
and left continuity of α↓pkt:

α′(t) =

(
f↑ ◦

(
α↓pkt

)↑)−
(t) + Lmax, (88)

Since f↑(t) = [tLmax − Lmax]+, we have:

α′(t) =

[
Lmax

((
α↓pkt

)↑)−
(t)− Lmax

]+
+ Lmax. (89)

Since αpkt is left continuous, by Lemma 3:

α′(t) = Lmaxαpkt(t)− Lmax + Lmax. (90)

Note that α+
pkt(t) ≥ 1. Thus α′(t) = α(t) given by (24).

Second we show that (24) does not give (23). By item 1,
the flow with packet-level arrival-curve αpkt conforms to bit-
level arrival-curve with α = f ′ ◦ αpkt, where f ′(t) = tLmax.
In addition, the flow also conforms to a g′-regularity constraint
that derives by applying item of Proposition 1 to (24):

g′(x) = α↓(x+ Lmin) = (f ′ ◦ αpkt)
↓

(x+ Lmin)

=
(
α↓pkt ◦ f

′↓
)

(x+ Lmin), (91)

where the last equality is obtained by using (43) and continuity
of f ′. Now, since f ′↓(x) = x

Lmax , we have:

g′(x) = α↓pkt

(
x+ Lmin

Lmax

)
. (92)

When all packets are of the same size (Lmax = Lmin), g′ = g.
When Lmin < Lmax, since α↓pkt is a wide-sense increasing
function, we have g′ ≤ g and g′ 6= g, i.e. g′ is a weaker
constraint than g given in (23).

C. Proof of Lemma 1

Let n be the index of the packet of interest with length ln.
Using Lemma 1 of [11], there exists an m ≤ n such that:

β(Qn −Am) ≤
n−1∑
k=m

lk, (93)

where Qn is the beginning of transmission of packet n. Using
(40), Eq. (93) gives:

Qn −Am ≤ β↑
( n−1∑
k=m

lk

)
. (94)

Therefore Qn satisfies,

Qn ≤ max
m≤n

{
Am + β↑

( n−1∑
k=m

lk

)}
. (95)

Since
∑n−1
k=m lk ≤ w(An −Am), we have:

Qn ≤ max
m≤n

{
Am + β↑

(
w(An −Am)

)}
. (96)

By defining t def
= An −Am ≥ 0, we further obtain,

Qn −An ≤ sup
t≥0

{
−t+ β↑ (w (t))

}
. (97)

Applying (37) to (97):

Qn −An ≤ sup
t≥0

{
(β↓)+ (w (t))− t

}
. (98)

Next, we use Lemma 2 of [11], which implies that for, f ∈
F0

inc,
sup
t≥0

{
f+(t)−Rt

}
= sup

t≥0
{f(t)−Rt} .

We apply this result to (98) by setting β↓ = f , and therefore:

Qn −An ≤ sup
t≥0

{
β↓ (w (t))− t

}
= h(w, β), (99)

which completes the proof.

D. Proof of Lemma 2

(i) Let us remind that lk and Ak are the length and the
arrival time of the kth packet with k = 1, 2... (Section III).
Let n be the index of the packet of interest belonging to flow
1 with length ln, ln = l. The sum of all packets can be split in
two parts, one with packets belonging to flow 1 and the one
with packets belonging to flow 2. Let F (k) be the flow id of
kth packet, then for any 0 ≤ m ≤ n, we have:

n−1∑
k=m

lk =

n−1∑
k=m

1{F (k)=1}lk +

n−1∑
k=m

1{F (k)=2}lk. (100)

For flow 1 with g-regularity constraint, by applying (40) to
(7), we have:

n−1∑
k=m

1{F (k)=1}lk ≤ g↑(An −Am), (101)
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For flow 2 with bit-level arrival-curve, using (5) we have:
n∑

k=m

1{F (k)=2}lk ≤ α+(An −Am). (102)

Note that since packet n belongs to flow 1,∑n
k=m 1{F (k)=2}lk =

∑n−1
k=m 1{F (k)=2}lk. Therefore,

together with (101) and (102):

n−1∑
k=m

1{F (k)=1}lk +

n−1∑
k=m

1{F (k)=2}lk

≤ g↑(An −Am) + α+(An −Am). (103)

Using (103) in (100):

n−1∑
k=m

lk ≤ w(An −Am), (104)

where the function w : R+ → R+ is w = g↑ + α+. Then by
Lemma 1 for packet n, we have:

Qn −An ≤ h(w, β), (105)

where Qn is start of transmission of packet n. Since the
transmission time for the packet of interest, n, is Dn−Qn = l

c ,
the delay bound is:

Dn −An = Dn −Qn +Qn −An ≤ h(w, β) +
l

c
, (106)

which concludes the proof for item 1. Now, since l ≤ Lmax
1 ,

h(w, β) +
Lmax

1

c is a delay bound for flow 1 which completes
the proof.

E. Proof of Theorem 2

Let us first define the function w as:

w(t) =

M∑
u=1

Lmax
u αpkt,u(t), (107)

The proof is in two steps: first, we construct a simulation trace;
second, we verify its properties.

Step 1. We start the construction of a simulation trace.
(a) We determine the smallest time instant t′ with the

following property:

β↓ (w(t′)− Lmax
1 )− t′ = sup

t≥0

{
β↓ (w(t)− Lmax

1 )− t
}

= h(w − Lmax
1 , β). (108)

In fact, the time t′ will be the time at which the packet of
interest arrives at the system and experiences the worst-case
delay.

(b) Now, we generate the packet sequence for the M flows.
Flow 1 has n1 = αpkt,1

+(t′) packets presented as a pair
(A1,L1) where A1 = (A1

1, A
1
2, . . . , A

1
n1

) is the sequence of
packet arrival times and L1 = (l11, l

1
2, . . . , l

1
n1

) is the packet
length sequence, defined for all i ∈ {1, . . . , n1} by:

l1i = Lmax
1 , (109)

A1
i = γ + inf{s ≥ 0 | αpkt,1(s) ≥ i} = γ + α↓pkt,1(i),

𝛽(𝑡)
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Fig. 6: The execution trace used in the proof of Theorem 2.
The delay of the packet with length Lmax

1 that arrives at time
t′ is ∆pkt.

where γ = t′ − α↓pkt,1(n1). Lemma 6 shows that
α↓pkt,1(n1) ≤ t′ and hence γ ≥ 0. The aforementioned packet
sequence indicates that the packets have maximum length and
the packet arrival is greedy, starting at time γ, and the last
packet (packet of interest) arrives at A1

n1
= t′.

Any other flow f , f 6= 1, has nf = αpkt,f
+(t′) packets

presented as a pair (Af ,Lf ) where Af = (Af1 , A
f
2 , . . . , A

f
nf

)

is the packet arrival sequence and Lf = (lf1 , l
f
2 , . . . , l

f
nf

)
is the packet length sequence, that are defined for all
j ∈ {1, . . . , nf} as:

lfj = Lmax
f ,

Afj = inf{s ≥ 0 | αpkt,f (s) ≥ j} = αpkt,f
↓(j). (110)

The aforementioned packet sequence indicate that the packets
have maximum length and their arrival is greedy starting at
time Af1 = αpkt,f

↓(1) = 0. With the above arrival construc-
tion, we have the cumulative input packet-count function as:

Nu(t) =

{∑nu

i=1
1Au

i <t
t ≤ t′

nu t > t′
, ∀u = 1, 2, . . . ,M. (111)

Now let us merge the two packet sequences to express
the total traffic. We define the pair (A,L) with arrival se-
quence A = (A1, A2, . . . , An) and lengths sequence L =
(l1, l2, . . . , ln) of total packets and n =

∑M
k=1 nk, i.e.,

(A,L) =
⋃M
k=1(Ak,Lk). Lemma 6 indicates that for any

f 6= 1:
Afnf

≤ t′ = A1
n1
.

In the case Afnf
= A1

n1
= t′, assume that the last packet of

flow 1 is enqueued after the last packet of other flows; hence,
An = A1

n1
= t′ and ln = Lmax

1 .
The cumulative input function, I(t) is shown as the green

line in Fig. 6 that is obtained as:

I(t) =

M∑
u=1

Lmax
k Nu(t) =

{∑∞
k=1

Lmax
k 1{Ak<t} t ≤ t′∑M

u=1 nuL
max
u = w+(t) t > t′

(c) For the output, we first construct the fluid output curve
F (t) (orange dotted-line in Fig. 6) given by

F (t) = inf
0≤s≤t

{I(s) + β(t− s)} , (112)
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so that the service curve property would be automatically
satisfied if we would let the output cumulative function be
O(t) = F (t). However, we cannot take O(t) = F (t) because
F (t) does not satisfy the condition that packet transmission is
at rate c. In order to obtain the output function O(t), we first
observe the start and end of transmission time of a packet li,
i.e., Qi and D′i as:

D′i = inf
{
s ≥ 0 : F (s) ≥ I+(Ai)

}
= F ↓

(
I+(Ai)

)
,

Qi = inf
{
s ≥ 0 : F (s) ≥ I+(Ai)− li

}
= F ↓

(
I+(Ai)− li

)
.

In the above definitions, we have D′i = Qi+1 as
I+(Ai+1) = I+(Ai) + li by definition of I . For the output
function O(t), we keep the same time Qi for the start of
transmission of packet i, but, we let the transmission finish
at time Di = Qi + li

c . Observe that:

D′i −Di = F ↓
(
I+(Ai)

)
−
(
F ↓
(
I+(Ai)− li

)
+
li
c

)
.

(113)

By Lemma 7, F (t) is c-Lipschitz. Then using Lemma 4,

D′i −Di ≥
li
c
− li
c

= 0. (114)

Then, more precisely ∀i = 1, . . . , n1 + n2 and ∀t ∈ [Qi, D
′
i],

O(t) is:

O(t) =

{
c(t−Qi) + F (Qi) Qi ≤ t < Di,

F (Qi) + li Di ≤ t ≤ D′i.
(115)

O(t) is shown with red line in Fig. 6.
Step 2. We verify that all requirements in the theorem are

satisfied. First we show that the service curve property holds;
to do this, since F satisfies the service curve property, it is
sufficient to show that O(t) ≥ F (t) : ∀t ∈ [Qi, D

′
i] for any

i = 1, . . . , n. Using Lipschitz continuity of F for t ∈ [Qi, Di),

F (t) ≤ F (Qi) + c(t−Qi) = O(t). (116)

For t ∈ [Di, D
′
i], by construction:

F (t) ≤ F (Qi) + li = O(t). (117)

The above equations imply O(t) ≥ F (t),∀t ≥ 0; therefore,
the service curve property is satisfied when the output is O(t).

Moreover, by construction the system is FIFO, the input is
packetized and packet transmission occurs at rate c. We need to
prove that the input conforms to the packet-level arrival-curve.
For any flow f , f 6= 1, consider two time instants s, t ≥ 0,
s ≤ t.
If t = s = 0, then Nf (t)−Nf (s) = αpkt,f (t− s) = 0.
If 0 < t ≤ t′, there exist a packet index m′ where
t ∈ (Afm′ , A

f
m′+1]. Then by Lemma 8 with k = 0, we have

m′ = αpkt,f (t). Now if s = 0, we have

Nf (t)−Nf (s) = Nf (Afm′+1)−Nf (0) = m′ = αpkt,f (t);

otherwise, there exists a packet index m (m ≤ m′), where
s ∈ (Afm, A

f
m+1]. Then:

Nf (t)−Nf (s) = Nf (Afm′+1)−Nf (Afm+1) = m′ −m.

By Lemma 8 with k = 0, m′ = αpkt,f (t) and m = αpkt,f (s).
Therefore:

Nf (t)−Nf (s) = αpkt,f (t)− αpkt,f (s) ≤ αpkt,f (t− s),

where the last inequality is due to sub-additivity of αpkt,f .
If t > t′, by construction, Nf (t) = nf = α+

pkt,f (t′). Now, for
s = 0, we have

Nf (t)−Nf (s) = nf = αpkt,f
+(t′) ≤ αpkt,f (t);∀t > t′.

For 0 < s ≤ t′, there exists a packet index m (m ≤ m′),
where s ∈ (Afm, A

f
m+1]. Then by Lemma 8 with k = 0, we

have m = αpkt(s). Therefore,

Nf (t)−Nf (s) = nf −m = αpkt,f
+(t′)− αpkt,f (s)

≤ αpkt,f (t− s);∀t > t′,

where the last inequality is due to sub-additivity of αpkt,f .
For t′ < s ≤ t, Nf (s) = nf . Then,

Nf (t)−Nf (s) = nf − nf = 0 ≤ αpkt,f (t− s),

which shows flow f conforms to the packet-level arrival-curve.
For flow 1, similarly to the above computation and using

Lemma 8 with k = γ, we obtain

N1(t)−N1(s) ≤ αpkt(t− s);∀s ≤ t,∀t ≥ 0,

which shows flow 1 conforms to packet-level arrival-curve.
Last, we show that packet n achieves the delay bound. We

have for packet n, An = t′; then:

Qn = F ↓(I+(t′)− ln) = F ↓(w+(t′)− Lmax
1 ). (118)

Furthermore, Dn = Qn + ln
c = Qn +

Lmax
1

c , therefore,

Dn −An = F ↓(w+(t′)− Lmax
1 )− t′ + Lmax

1

c
.

By definition of F in (112), we have F ≤ β. Then by [29,
Lemma 10.1], F ↓ ≥ β↓. Hence:

Dn −An ≥ β↓(w+(t′)− Lmax
1 )− t′ + Lmax

1

c

= h(w+ − Lmax
1 , β) +

Lmax
1

c
= ∆pkt. (119)

By Theorem 1, we have Dn−An ≤ ∆pkt; then together with
the above equation, we have Dn −An = ∆pkt.

Lemma 6. Consider a wide-sense increasing function f :
R+ → Z+, a positive real value t0, a positive integer
n = f+(t0), and a value x = f↓(n); then we have x ≤ t0.

Proof. We have:

x = f↓(n) = f↓(f+(t0)). (120)

By (36), f↓ = (f+)↓. Therefore, x = (f+)↓(f+(t0)); then
using Property (P1) of [29, Chapter 10.1] with F = f+, we
have (f+)↓(f+(t0)) ≤ t0 which concludes the proof.

Lemma 7. Consider two functions f, g where f is L-Lipschitz
and g ≥ 0. Then z(t) = inf0≤s≤t{g(s) + f(t − s)} is L-
Lipschitz.
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Proof. Let us define the set of functions ws(t) with constant
s ∈ R+, as:

ws(t) = g(s) + f(t− s). (121)

Then, z(t) = inf0≤s≤t{ws(t)}. First we prove that ws is
L-Lipschitz for any s ∈ R+. For any t1, t2 ∈ R+ and t2 ≥ t1:

|ws(t2)−ws(t1)|= |g(s) + f(t2 − s)− g(s)− f(t1 − s)|
= |f(t2 − s)− f(t1 − s)|≤ L|t2 − t1|. (122)

The last inequality is obtained as f is L-Lipschitz. Now we
prove the lemma. By (122), we have for any s ∈ R+:

ws(t1)− L|t2 − t1|≤ ws(t2) ≤ ws(t1) + L|t2 − t1|. (123)

Using the left inequality, we have:

∀s ∈ R+ : inf
0≤u≤t1

{wu(t1)− L|t2 − t1|} ≤ ws(t2). (124)

that gives z(t1)− L|t2 − t1|≤ ws(t2); therefore,

z(t1)− L|t2 − t1|≤ inf
0≤s≤t2

{ws(t2)} = z(t2) (125)

Using the right inequality in (123), we have:

inf
0≤s≤t2

{ws(t2)} ≤ inf
0≤s≤t2

{ws(t2) + L|t2 − t1|}

≤ inf
0≤s≤t1

{ws(t2)}+ L|t2 − t1|, (126)

that gives z(t2) ≤ z(t1) + L|t2 − t1|. Then, together with
(125):

z(t1)− L|t2 − t1|≤ z(t2) ≤ z(t1) + L|t2 − t1|. (127)

Hence, |z(t2)−z(t1)|≤ L|t2−t1|, which concludes the proof.

Lemma 8. Consider a left-continuous function α : R+ → N
and a constant k ≥ 0. Let A = (A1, A2, . . . ) be a sequence
where Ai = k + α↓(i). Assume a positive integer m and
a time instant t, such that t ∈ (Am, Am+1]; then we have
m = α(t− k).

Proof. We prove α(t − k) ≥ m and α(t − k) ≤ m. We
have t > Am = k + α↓(m); therefore, t− k > α↓(m). Then,
by [34, Proposition 6], we have α(t− k) ≥ m.
Also, since t ≤ Am+1, for any ε > 0 we have:

t− ε < Am+1 = k + α↓(m+ 1). (128)

Therefore,

t− k − ε < α↓(m+ 1). (129)

Then, by [34, Proposition 6], α(t− k − ε) < m+ 1. Hence:

lim
ε→0

α(t− k − ε) < m+ 1. (130)

As α is left-continuous, we have α(t− k − ε) = α(t− k) <
m+ 1. Since α(t− k) ∈ N, α(t− k) ≤ m.

F. Proof of Theorem 3

As discussed in Section III-E, the flows can have sliding-
interval and fixed-interval regulation constraints; let F and S
be respectively the sets of flows with fixed interval and sliding
interval. By (13), if a flow i has the sliding interval (τi,Ki)
constraint, this is equivalent to have the following packet-level
arrival-curve:

αpkt,i(0) = 0, αpkt,i(t) = Kid
t

τi
e, t > 0. (131)

By (16), if a flow i has the fixed interval (τi,Ki), the constraint
implies the following packet-level arrival-curve:

αpkt,j(0) = 0, αpkt,j(t) = Kjd
t

τj
e+Kj , t > 0. (132)

Then the delay bound obtain by Theorem 1 for flow 1 is:

∆pkt =h(

N∑
u=1

Lmax
u Kud

t

τu
e+

N∑
u=1

Lmax
u Ku1{u∈F} − Lmax

1 , β)

+
Lmax
1

c
. (133)

We want to construct a simulation trace where a packet of
flow 1 experiences a delay arbitrarily close to D. To this end,
for flows in S, we use (131) to construct the input packet
sequence as it is equal to the sliding interval interpretation.
For any other flow j with fixed interval (τj ,Kj), we use the
following packet-level arrival-curve:

αεpkt,j(0) = 0,

αεpkt,j(t) = Kjd
[t− ε]+

τj
e+Kj : t > 0,∀ε ∈ (0,min

u
{τu}).

(134)

Lemma 9 shows that a greedy packet-sequence of αjε, starting
at t0 = maxu{τu} − ε, conforms to Fixed interval (τj ,Kj).
Now, let:

wε(t) =

N∑
u=1

Lmax
u αupkt(t)1{u∈S} +

N∑
u=1

Lmax
u αεpkt,u(t)1{u∈F}

=

N∑
u=1

Lmax
u Kud

t

τu
e1{u∈S}

+

N∑
u=1

Lmax
u Kud

[t− ε]+

τu
e1{u∈F} +

N∑
u=1

Ku1{u∈F}.

(135)

The tightness scenario follows the same as Theorem 2 by
generating a greedy packet-sequence for every flow using the
packet-level arrival-curves in (134) for fixed-interval flows and
(131) for sliding-interval flows. To create a feasible greedy
packet-sequence, we shift the start of the simulation by t0
(as mentioned earlier, this guarantees the existence of greedy
packet-sequence for the fixed-interval flows). Therefore, a
packet of a flow of interest, i.e., flow 1, experiences a delay of
dε = h(wε−Lmax

1 , β)+
Lmax

1

c as shown in (119). By definition
of wε in (135), dε is dependent on ε. We show next that
d ≥ ∆pkt − ε.
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To this end, let us define the following auxiliary functions:

f(t) =

N∑
u=1

Lmax
u Kud

t

τu
e1{u∈F}, t > 0; f(t) = 0, t ≤ 0,

g(t) =

N∑
u=1

Lmax
u Kud

t

τu
e1{u∈S} +

N∑
u=1

Ku1{u∈F} − Lmax
1 .

(136)

Then we have

wε(t) = f(t− ε) + g(t) + Lmax
1

∆pkt = h(f + g, β) +
Lmax
1

c
. (137)

By Lemma 10, h(wε−Lmax
1 , β) ≥ h(f + g, β)− ε; therefore,

dε ≥ h(f + g, β) +
Lmax
1

c
− ε = ∆pkt − ε. (138)

Moreover, by Theorem 1, dε ≤ ∆pkt; hence,

∆pkt − ε ≤ dε ≤ ∆pkt.

Finally, when ε→ 0, dε gets arbitrary close to ∆pkt.

Lemma 9. Consider the following packet-level arrival-curve:

αpkt(0) = 0,

αpkt(t) = Kd [t− ε]
+

τ
e+K : t > 0,∀ε ∈ (0, τ). (139)

Then, a greedy packet-sequence of αpkt at any time
t0 ≥ τ − ε, conforms to the fixed-interval (τ,K) in (15).

Proof. Consider the cumulative packet function N defined as:

N(0) = N(t0) = 0, N(t) = αpkt(t− t0), t > t0. (140)

By definition, the above function is greedy at time t0. Now, in
(15), let θ = t0−τ+ε. Since t0 ≥ τ − ε, we have 0 ≤ θ < t0;
therefore, N(θ) = 0. Next, we show that the greedy packet-
sequence conforms to the fixed-interval constraint for any time
≥ θ. For i = 0 in (15):

N(θ + τ)−N(θ) = N(t0 + ε)− 0 = αpkt(ε) = K, (141)

and for i ≥ 1:

N(θ + (i+ 1)τ)−N(θ + iτ) = N(t0 + ε+ iτ)

−N(t0 + ε+ (i− 1)τ) = αpkt(ε+ iτ)

− αpkt(ε+ (i− 1)τ) (142)
= (iK +K)− ((i− 1)K +K) = K.

Therefore, ∀i ∈ N:

N(θ) = 0, N(θ + (i+ 1)τ)−N(θ + iτ) ≤ K, (143)

which shows there exists θ (= t0−τ+ε) where the cumulative
function N , as a greedy packet-sequence of αpkt at t0,
conforms to the fixed interval (τ,K) constraint.

Lemma 10. Consider the functions f, g, β ∈ Finc. Let

fε(t) =

{
f(t− ε) t ≥ ε,
0 t < ε.

(144)

Then h(fε + g, β) ≥ h(f + g, β)− ε.

Proof. Therefore,

h(fε + g, β) = sup
t≥0
{β↓ (fε(t) + g(t))− t}

≥ sup
t≥ε
{β↓ (fε(t) + g(t))− t}

= sup
t≥ε
{β↓ (f(t− ε) + g(t))− t}. (145)

Since g(.) is wide-sense increasing, g(t) ≥ g(t− ε), ∀t ≥ ε.
Therefore:

h(fε + g, β) ≥ sup
t≥ε
{β↓ (f(t− ε) + g(t− ε))− t}

= sup
s≥0
{β↓ (f(s) + g(s))− s− ε}

= sup
s≥0
{β↓ (f(s) + g(s))− s} − ε

= h(f + g, β)− ε, (146)

which concludes the proof.

G. Proof of Theorem 5

(i) Let us remind that lk and Ak are the length and the
arrival time of the kth packet with k = 1, 2... (Section III).
Let n be the index of the packet of interest belonging to flow
1 with length ln, ln = l. The sum of all packets can be split in
two parts, one with packets belonging to flow 1 and the one
with packets belonging flow 2. Let F (k) be the flow id of kth

packet, then:
n−1∑
k=m

lk =

n−1∑
k=m

1{F (k)=1}lk +

n−1∑
k=m

1{F (k)=2}lk. (147)

The flow of interest 1 has a bit-level arrival-curve; using its
min-plus representation (5), for any 0 ≤ m ≤ n, we can write:

n∑
k=m

1{F (k)=1}lk ≤ α+(An −Am). (148)

By excluding the last packet from the left hand-side of (148)
(note that ln = l), we obtain:

n−1∑
k=m

1{F (k)=1}lk ≤ α+(An −Am)− l. (149)

Similarly, flow 2 has bit-level arrival-curve; thus, using (5) for
any 0 ≤ m ≤ n, we can write:

n−1∑
k=m

1{F (k)=2}lk ≤ α′
+

(An −Am). (150)

Note that since packet n belongs to flow 1, the above equation
conforms the min-plus representation of bit-level arrival-curve
in (5) for flow 2. Now, we sum up (149) and (150):

n−1∑
k=m

1{F (k)=1}lk +
n−1∑
k=m

1{F (k)=2}lk

≤ α+(An −Am) + α′
+

(An −Am)− l. (151)

Using (151) in (147):
n−1∑
k=m

lk ≤ w(An −Am), (152)
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where the function w : R+ → R+ is w = α+ +α+
2 − l. Then

by Lemma 1 for packet n, we have:

Qn −An ≤ h(w, β), (153)

where Qn is start of transmission of packet n. Since the
transmission time for the packet of interest, n, is Dn−Qn = l

c ,
the delay bound is:

Dn −An = Dn −Qn +Qn −An ≤ h(w, β) +
l

c
, (154)

which completes the proof.
(ii) We want to compute

sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l)

}
= sup

l

[
sup
t

(
β↓(α+ + α′

+ − l)− t
)

+
l

c

]
= sup

t

[
sup
l

(
β↓(α+ + α′

+ − l) +
l

c

)
− t
]
.

(155)

Since β is c-Lipschitz, by Lemma 4, it satisfies:

β↓(α+ + α′
+ − Lmin

1 )−β↓(α+ + α′
+ − l)

≥ 1

c
(l − Lmin

1 ). (156)

This gives,

β↓(α+ + α′
+ − l) ≤β↓(α+ + α′

+ − Lmin
1 )

− 1

c
(l − Lmin

1 ). (157)

By using the last relation in (155), we obtain,

sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l)

}
= sup

t

[
β↓(α+ + α′

+ − Lmin
1 )− t+

Lmin
1

c

]
= h

(
α+ + α′

+ − Lmin
1 , β

)
+
Lmin
1

c
. (158)

Since β is c-Lipschitz continuous and α, α′ are left continuous,
by [10, Theorem 5.6], we have:

h
(
α+ + α′

+ − Lmin
1 , β

)
= h

(
α+ α′ − Lmin

1 , β
)
, (159)

which together with (158) completes the proof.

H. Proof of Proposition 3

From Proposition 2, any flow u conform to a bit-level
arrival-curve αu(t) = αpkt,u(t)Lmax

u . Then by Theorem 5,
the delay bound for a packet with size l of flow 1 is:

∆A(l) = h

(
U∑
u=1

αpkt,uL
max
u − l, β

)
+
l

c
. (160)

By [10, Proposition 5.12], h, is monotonically increasing with
respect to its first argument; therefore, ∆pkt(l) ≤ ∆A(l). As a
result, supl ∆

pkt(l) ≤ supl
{

∆A(l)
}

, i.e., ∆pkt ≤ ∆A. Note
that, if Lmax

1 = Lmin
1 (all packets have the same length), then

∆pkt = ∆A. For the general statement, we show a case that

when Lmin
1 < Lmax

1 , the per-flow bound in Theorem 1 strictly
improves ∆A.

First, for the ease of presentation, let us define
w(t) =

∑U
u=1 αpkt,uL

max
u . Next, assume a rate-latency

service-curve β(t) = R[t − T ]+, R < c. Then, as
β↓(x) = T + x

R , Theorem 1 gives:

∆pkt = sup
t≥0

{
β↓ (w(t)− Lmax

1 )− t
}

+
Lmax
1

c

= sup
t≥0

{
T +

w(t)− Lmax
1

R
− t
}

+
Lmax
1

c

= T − Lmax
1

(
1

R
− 1

c

)
+ sup

t≥0

{
w(t)

R
− t
}
. (161)

Using the derived bit-level arrival-curves of flows 1 and 2,
Theorem 5 gives:

∆A = sup
t≥0

{
β↓
(
w(t)− Lmin

1

)
− t
}

+
Lmin
1

c

= sup
t≥0

{
T +

w(t)− Lmin
1

R
− t
}

+
Lmin
1

c

= T − Lmin
1

(
1

R
− 1

c

)
+ sup

t≥0

{
w(t)

R
− t
}
. (162)

By (161) and (162):

∆pkt −∆A = −(Lmax
1 − Lmin

1 )

(
1

R
− 1

c

)
< 0, (163)

as Lmin
1 < Lmax

1 and R < c.

I. Proof of Proposition 4

(i) Theorem 5 gives:

∆A(l) = h(α+ + α′
+ − l, β) +

l

c
. (164)

From item 1 of Proposition 1, g1(x) = α↓(x + Lmin
1 ) and

g2(x) = α′
↓
(x+ Lmin

2 ). By (36), we have:

g1(x) = (α+)↓(x+ Lmin
1 ), g2(x) = (α′

+
)↓(x+ Lmin

2 ).

Since (α+)↓ and (α′
+

)↓ are left continuous and respectively
larger than or equal to Lmax

1 and Lmax
2 , by (45):

g↑1(t) = ((α+)↓)↑(t)− Lmin
1 ,

g↑2(t) = ((α′
+

)↓)↑(t)− Lmin
2 . (165)

As α+ and α′+ are right continuous, by (42) we have:

g↑1(t) = α+(t)− Lmin
1 , g↑2(t) = α′

+
(t)− Lmin

2 . (166)

Then, by applying Theorem 4, we obtain

∆G(l) = h(α+ + α′
+ − Lmin

1 − Lmin
2 + Lmax

2 , β) +
l

c
.

(167)

Let us compare (164) and (167). Since l ≥ Lmin
1 and

Lmax
2 ≥ Lmin

2 , we have:

α+ + α′
+ − l ≤ α+ + α′

+ − Lmin
1 − Lmin

2 + Lmax
2 . (168)

By [10, Proposition 5.12], h, is monotonically increasing with
respect to its first argument; hence, ∆A(l) ≤ ∆G(l).
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Since ∆A(l) ≤ ∆G(l) holds for all packet sizes l, it also
holds that supl ∆

A(l) ≤ supl ∆
G(l), i.e., ∆A ≤ ∆G. If

Lmax
1 = Lmin

1 and Lmax
2 = Lmin

2 (the packets of each flow
have the same length), then ∆A = ∆G. For the general
statement, we show a case that when Lmin

1 < Lmax
1 or

Lmin
2 < Lmax

2 , we have ∆A < ∆G.
First, for the ease of presentation, let us define

w(t) = α(t) + α′(t). Next, assume a rate-latency service-
curve β(t) = R[t− T ]+, R < c. Then, as β↓(x) = T + x

R ,
Theorem 5 gives:

∆A = sup
t≥0

{
β↓
(
w(t)− Lmin

1

)
− t
}

+
Lmin
1

c

= sup
t≥0

{
T +

w(t)− Lmin
1

R
− t
}

+
Lmin
1

c

= T − Lmin
1

R
+ sup

t≥0

{
w(t)

R
− t
}

+
Lmin
1

c
. (169)

Using the derived g-regularity constraints of flows 1 and 2,
Theorem 4 gives:

∆G = sup
t≥0

{
β↓
(
w(t)− Lmin

1 − Lmin
2 + Lmax

2

)
− t
}

+
Lmax
1

c

= sup
t≥0

{
T +

w(t)− Lmin
1 − Lmin

2 + Lmax
2

R
− t
}

+
Lmax
1

c

= T − Lmin
1

R
+ sup

t≥0

{
w(t)

R
− t
}

+
Lmax
2 − Lmin

2

R
+
Lmax
1

c
.

(170)

By (169) and (170):

∆A −∆G = −L
max
2 − Lmin

2

R
− Lmax

1 − Lmin
1

c
< 0, (171)

as Lmin
1 < Lmax

1 or Lmin
2 < Lmax

2 .
(ii) Theorem 4 gives:

∆G(l) = h(g↑1 + g↑2 + Lmax
2 , β) +

l

c
. (172)

From item 2 of Proposition 1, we obtain α(t) = g↓1(t)+Lmax
1

and α′(t) = g↓2(t) + Lmax
2 . Using Theorem 5, we have:

∆A(l) = h((g↓1)+ + (g↓2)+ + Lmax
2 + Lmax

1 − l, β) +
l

c

= h(g↑1 + g↑2 + Lmax
2 + Lmax

1 − l, β) +
l

c
. (173)

Note that by (37), (g↓1)+ = g↑1 and (g↓2)+ = g↑2 . Similarly to
the proof of (i), due to monotony of h with respect to its first
argument, ∆G(l) ≤ ∆A(l).

Since ∆G(l) ≤ ∆A(l) holds for all packet sizes l, it also
holds that supl ∆

G(l) ≤ supl ∆
A(l), i.e., ∆G ≤ ∆A. If

Lmax
1 = Lmin

1 (the packets of the flow if interest have the
same length), then ∆A = ∆G. For the general statement,
similarly to the proof of item (i), we show a case that when
Lmin
1 < Lmax

1 , we have ∆A < ∆G. Considering the same
service curve β(t) = R[t− T ]+, R < c as proof of item (1),
we obtain:

∆G −∆A = −(Lmax
1 − Lmin

1 )

(
1

R
− 1

c

)
< 0, (174)

as Lmin
1 < Lmax

1 and R < c.

APPENDIX C
EXAMPLE OF NON c-LIPSCHITZ SERVICE CURVE

Consider the following function (FIFO residual service
curve [10]), where θ and R are fixed positive numbers:

β(t) =

{
0 if t ≤ θ,
Rt if t > θ.

It is not c-Lipschitz as it is not continuous at t = θ.
Considering the assumptions of item (i) of Theorem 5, the
response time of a packet with size l of flow 1 is

∆A(l) = sup
t≥0

{
β↓
(
α+(t) + α′

+
(t)− l

)
− t
}

+
l

c
. (175)

and the delay bound for flow 1 is:

∆A = sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l)

}
(176)

Given that α+(t) ≥ Lmax
1 , α′+(t) ≥ Lmax

2 and l ≤ Lmax
1 , we

have

β↓
(
α+(t) + α′

+
(t)− l

)
= max(θ,

α+(t) + α′
+

(t)− l
R

)

(177)

Therefore,

∆A(l) = sup
t≥0

{
max(θ,

α+(t) + α′
+

(t)− l
R

)− t

}
+
l

c

= sup
t≥0

{
max(θ − t, α

+(t) + α′
+

(t)− l
R

− t)

}
+
l

c

= max

(
sup
t≥0
{θ − t} , sup

t≥0
{α

+(t) + α′
+

(t)− l
R

− t}

)
+
l

c

= max

(
θ +

l

c
, ψ − l

R
+
l

c

)
, (178)

with

ψ = sup
t≥0

{
α+(t) + α′

+
(t)

R
− t

}
.

After examining all cases and some algebra, we find that
• if R(ψ − θ) ≤ (1− R

c )Lmin
1 + R

c L
max
1 then

∆A = sup
l∈[Lmin

1 ,Lmax
1 ]

{
∆A(l)

}
= θ +

Lmax
1

c

and the supremum is attained at l = Lmax
1 ;

• else

∆A = ψ − Lmin
1

R
+
Lmin
1

c
,

and the supremum is attained at l = Lmin
1 and not at

l = Lmax
1 .

Therefore, the supremum over [Lmin
1 , Lmax

1 ] to obtain ∆A can
be achieved either at l = Lmax

1 or l = Lmin
1 , depending on the

parameter values.


