This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 1

Reducing Cache Coherence Traffic with a
NUMA-Aware Runtime Approach

Paul Caheny, Lluc Alvarez, Said Derradji, Mateo Valero, Fellow, IEEE, Miquel Moret6, Marc Casas

Abstract—Cache Coherent NUMA (ccNUMA) architectures are a widespread paradigm due to the benefits they provide for scaling
core count and memory capacity. Also, the flat memory address space they offer considerably improves programmability. However,
ccNUMA architectures require sophisticated and expensive cache coherence protocols to enforce correctness during parallel
executions, which trigger a significant amount of on- and off-chip traffic in the system. This paper analyses how coherence traffic may
be best constrained in a large, real ccNUMA platform comprising 288 cores through the use of a joint hardware/software approach. For
several benchmarks, we study coherence traffic in detail under the influence of an added hierarchical cache layer in the directory
protocol combined with runtime managed NUMA-aware scheduling and data allocation techniques to make most efficient use of the
added hardware. The effectiveness of this joint approach is demonstrated by speedups of 3.14x to 9.97x and coherence traffic
reductions of up to 99% in comparison to NUMA-oblivious scheduling and data allocation.

Index Terms—Cache Coherence, NUMA, Task-based programming models

1 INTRODUCTION

HE ccNUMA approach to memory system architecture

has become a ubiquitous choice in the design-space
of symmetric multiprocessor (SMP) systems of all sizes.
ccNUMA architectures deliver clear benefits in the memory
hierarchy such as increased capacity, bandwidth and paral-
lelism. They realise these benefits by physically distributing
the cache and memory subsystem while still offering the
easily programmable abstraction of flat, shared memory to
the user. As the cache and memory are both shared and
distributed, memory accesses require a transaction based
coherence protocol to ensure correctness. Depending on the
state of the accessed cache line in the system, such coherence
transactions may be costly in terms of number of coherence
messages required and latency involved. This coherence
traffic travelling through on- and off-chip networks within
SMP architectures is responsible for a significant proportion
of the system energy consumption [24]. Judicious man-
agement of data locality (either performed by the runtime
system, or the application itself) is therefore crucial for both
energy efficiency and performance.

The most common way to program shared memory
SMP systems are thread-based programming models like
OpenMP [23] or Pthreads [5], which provide basic mecha-
nisms to handle NUMA architectures. The OpenMP 4.0 stan-
dard supports tasking and data dependencies. These two
features provide the opportunity for a runtime system to au-
tomatically handle data locality in a NUMA-aware fashion.
This opportunity arises from the runtime’s knowledge of the
system’s NUMA topology, the specification of the data each
task requires in the programming model and tracking where

e P Caheny, L. Alvarez, M. Valero, M. Moreté and M. Casas are
with the Barcelona Supercomputing Centre (BSC) and the Departa-
ment d’Arquitectura de Computadors at the Universitat Politécnica de
Catalunya (UPC), Barcelona 08034, Spain.

E-mail: {firstname}.{lastname}@bsc.es
o Said Derradji is with Bull/Atos Group. E-mail: said.derradji@atos.net

Manuscript received Month Day, 2017; revised Month Day, 201X.

DOI: 10.1109/TPDS.2017.2787123

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the data is allocated within the NUMA regions of the system
[10], [28]. Such an approach makes data motion a first class
element of the programming model, allowing the runtime
system to optimise for energy efficiency and performance.
The real impact of NUMA-aware work scheduling mech-
anisms on the cache coherence traffic that occurs within
SMP architectures is not well understood as it may be
masked by other factors. For example, to effectively deploy
a NUMA-aware work scheduling mechanism over an SMP
NUMA system two stipulations are required: (i) Data must
be appropriately distributed amongst all the NUMA regions
the system is composed of, and, (ii) work must be scheduled
where its requisite data resides. Then, it is not clear what
proportion of the observed benefits of a NUMA-aware work
scheduling mechanism are due to stipulation (i) or (ii). In
this work we distinguish between the effects of stipulation
(i) and (ii) on both cache coherence traffic and performance.
We directly, and in detail, characterise cache coherence
traffic in a real system with workloads relevant to high
performance and data centric computing, relate this traffic
to performance and assess the effectiveness of combining
runtime managed scheduling and data allocation techniques
with hardware approaches designed to minimise such traf-
fic. We use a large SMP architecture, a Bull bullion S server
platform, to make our analysis. The bullion S platform
utilises a sophisticated ccNUMA architecture composed of
sets of 2 sockets grouped into entities called modules. The
Bull Coherence Switch (BCS), a proprietary ASIC, manages
the inter-module interface and enables scaling up to a
maximum configuration of 8 modules (288 cores among 16
sockets of Intel Xeon CPUs) in a single SMP system. The BCS
achieves this by providing an extra module level layer in the
directory architecture managing coherence among the L3s in
the system. The in-memory directory information stored as
normal by the Intel architecture tracks directory information
for cache lines shared within a module on a per-socket gran-
ularity. In contrast the directory information the BCS stores

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
DOI: 10.1109/TPDS.2017.2787123

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 2

about cache lines which are exported inter-module is on the
less granular per-module basis. This directory information
allows the BCS to filter coherence traffic from the system
and thus enable scaling to larger coherent systems.

Our work uses the measurement capabilities provided
by the BCS to perform a direct, fine grain analysis of the
coherence traffic within the system. To the best of our
knowledge, our previous work [6] contained the first study
on how a hierarchical directory approach [19] to scaling
cache coherence interacts with a runtime managed strategy
to promote data locality in an SMP. In this work, we build on
our previous work to now look at the effect of NUMA-aware
work scheduling and data allocation on cache coherence
traffic in a larger NUMA system which, due to its size, can
easily become bottlenecked by coherence traffic.

Specifically, these are the main contributions of this

paper:

e A complete performance analysis of a large SMP
architecture comprised of 16 sockets arranged in
8 modules totalling 288 cores. We consider five
important scientific codes and three regimes of
work scheduling and memory allocation: (i) Default
(NUMA-oblivious) scheduling and first touch alloca-
tion. (ii) Default (NUMA-oblivious) scheduling and
interleaved allocation which uniformly interleaves
memory among NUMA regions at page granularity.
(iif) NUMA-aware runtime managed scheduling and
allocation. We see performance improvements up
to 9.97x among the benchmarks when utilising the
NUMA-aware regime.

e For the three regimes, a detailed measurement of
the coherence traffic within the SMP system, bro-
ken down into data traffic versus control traffic. We
further decompose these traffic types into message
classes e.g. data delivered to cache, write backs from
cache and the different request and response classes
in the control traffic. We see reductions in coherence
traffic up to 99% among the benchmarks when util-
ising the NUMA-aware regime.

e For each benchmark and regime of work schedul-
ing and data allocation we analyse how uniformly
the executions utilise the physically distributed re-
sources in the system, decoupling the factors under-
lying three distinct modes of behaviour: (i) Poorly
performing, non-uniform utilisation of system re-
sources, (ii) Uniform, but energy inefficient utilisa-
tion of system resources with limited performance
scaling, (iii) Uniform and energy efficient utilisation
of system resources with best performance scaling.

This paper is organised as follows: Section 2 details
the types and classes of coherence traffic in our analy-
sis. Section 3 describes the architecture of the large SMP
system used to make our analysis. Section 4 introduces
the programming model and runtime system that supports
the three different regimes of work scheduling and data
allocation. Section 5 details the benchmarks used. Section 6
presents the results of our analysis of the performance and
coherence traffic. Section 7 discusses related work. Lastly,
we conclude the paper in Section 8.

2 CACHE COHERENCE TRAFFIC

While the logically flat view of memory an SMP offers
the user considerably eases the programming burden, it
requires a sophisticated mechanism to enforce coherence
between the physically distributed caches in the system.

In order to analyse this mechanism we categorise the
coherence traffic it triggers within the SMP into two types,
each consisting of different classes of messages. The first
type, Data messages, contain user data (cache lines) while
the second type, Control messages, are messages that signal
activities in the coherence protocol and do not contain user
data. For example, a message transferring a cache line from
a memory controller to a cache (or vice versa) belongs to the
Data traffic type while asking a certain cache for the status
of a cache line or requesting data in a certain state from a
memory controller are of the Control traffic type.

To understand in greater detail in what nature the soft-
ware (work scheduling & data allocation regime) techniques
and the BCS affect the traffic we further break down the two
types of traffic into message classes. An outline of message
classes and their role in the coherence protocol follows:

Data Messages: Messages that carry a single cache line
payload. If the receiver is a cache the message is of the DTC
(Data To Cache) class, the sender of such messages may be a
memory controller or another cache. If a memory controller
is the receiver of a Data message, the message falls into the
DWB (Data Write Back) class, the sender of a DWB message
is always a cache.

Control Messages: Messages that carry protocol sig-
nalling messages without a data payload. Request messages
from a cache to a memory controller belong to the HREQ
(Home Request) class. For example such a request could be
the cache asking the memory controller for access to a cache
line in a certain state. Depending on the existing state of the
cache line in the requesting cache and the state the cache
line is requested in, a HREQ may be reciprocated by a DTC
message. SNP (Snoop) messages are requests from a memory
controller to a cache asking it to perform some action, for
example to invalidate a cache line or forward it to another
cache. Depending on the exact nature of a SNP message, it
may be reciprocated by a HRSP (Home Response) message.
A HRSP message is a confirmation sent from a cache to
a memory controller that the action requested by the SNP
is completed. An NDR (Non-Data Response) message is sent
from a memory controller to a cache to signal the completion
of a coherence transaction, where the memory controller did
not need to deliver data to the cache. This could be because,
for example, the data was delivered indirectly from another
cache to the requesting cache or the requesting cache already
had the data but requested to change the state of the cache
line.

These classes, categorised as Data or Control traffic (see
Table 1), cover all possible traffic types at the LLC (Last
Level Cache) to memory controller interface within the SMP
and provide an insightful basis upon which to analyse
the effectiveness of the three work scheduling and data
allocation regimes and the BCS on the coherence traffic.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 3

4 esssssssmsssssssssssse, L esssssssssssssmssssses
1 o e, o :
] Socket Socket
co c17f { co
KN D NS A R

Vil Ss
,l, JPCLLTTT LRIV LRI TTET S . RCLLETTITET IV R VIV LIPS . \\\
! Socket " Socket ‘:
1 o
| co c17f { co c17 i
! g I
| | Juwfjuf..|u |
! g I
| L2 12 F {L2 L2 !

1
] L3 i
i 2 i I
] & arl K=D) I
I@"’ 'n@ i
! 1
| N !
' M BCS H
A} | 4 1
\ /
AN Module /’

Fig. 1: Logical view of a dual module bullion S system [2]

TABLE 1: Coherence protocol message classes

Type Class | Description
Data DWB Data Write Back, rr.lessage fr(.)m cache to
mem. controller with cache line payload
T h
Data DTC Data To .Cac e, me?ssage towards
cache with cache line payload
H R h i h
Control | HREQ .ome equest, cache requesting cache
line from mem. controller
. 11 i
Control | SNP Snoop., mer.n C?ntro er reguestmg state
of, or invalidating, cache line
H R h idi
Control | HIRSP ome espons.e, cache providing
state of cache line to mem. controller
-Data R . 11
Control | NDR Non ata esp(.mse, Tnem controller
signals completion without data

3 BULLION S ARCHITECTURE

Figure 1 shows a dual module bullion S system. Each
module comprises two Intel Xeon sockets and their local
memory connected to a single Bull proprietary ASIC, the
BCS. In this work we use the largest possible configuration
of the bullion S system, comprising eight modules where
each module contains 2 sockets with 18 cores each, resulting
in a total of 288 cores sharing memory. Our previous work
[6] was performed on a much smaller system made up of 2
modules, each containing 2 sockets with 15 cores each for a
total of 60 cores.

3.1 Cache Coherence in the bullion S System

The BCS is the glue for connecting multiple modules into
a single SMP system. Cache coherence traffic statistics are
collected from the BCS during benchmark execution. As all
coherence traffic is measured within the BCS, the results we
present include only coherence traffic travelling via the BCS
(see Figure 1) in each module. Traffic travelling between the

two CPU sockets within a single module does not travel
via a BCS and is therefore not included. Measurements are
recorded at each BCS in the system for both traffic incoming
to the BCS (from its two local CPU sockets) and traffic
outgoing from the BCS (towards its two local CPU sockets).
We term this incoming or outgoing nature of the traffic its
directionality. Henceforth, all references to cache refer to the
LLC (labelled L3 in Figure 1) of a processor unless otherwise
indicated and the coherence traffic observed represents only
coherence transactions at the interface of the LLC cache and
the system memory (via a BCS). The coherence agents for
the system memory in Figure 1 are the memory controllers
(labelled MC).

The BCS is an actor in the cache coherence protocol of
the system rather than simply a routing point for inter-
module messages. The BCS stores module level directory
information about cache lines which have been exported
from a memory in its local NUMA regions to caches in
other modules. This enables the BCS to respond in place
of an LLC cache or memory controller in certain inter-
module cache transactions, reducing the coherence traffic
required in the system. For example, for SNP and HRSP
messages the BCS may filter messages from the system,
where it can participate in the coherence transaction in
place of a CPU. Therefore, SNP messages may appear as
incoming to a BCS in one module without appearing as
outgoing in any other module and vice versa for the HRSP
messages. In the process of maintaining its own directory
information the BCS may also initiate SNP messages to other
modules, so CPUs may see SNP messages which originate
at a BCS and not at any other processor in the system.
Therefore, SNP messages may appear as outgoing from a
BCS without having appeared as incoming to any other BCS
in the system. When NDR messages are sent by a CPU they
may be piggybacked on unused bits in the Data message
classes as a bandwidth optimisation. Conversely, the BCS
aims to optimise for latency by not piggybacking NDR
messages on Data message classes. Also, when signalling

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 4

the writeback or forwarding of modified data inter-module,
incoming HRSP messages in a source module may need to
be conveyed as outgoing HREQ message in the destination
module. In light of these actions the BCS performs in the
coherence protocol, there may be significant asymmetry
between the incoming and outgoing traffic levels for the
HREQ, SNP, HRSP and NDR message types.

By analysing the coherence traffic in the message types
and classes defined in Table 1 under the different memory
allocation and scheduling regimes, it is possible to provide a
detailed characterisation of the effect of the different regimes
and the BCS on the coherence traffic.

3.2 System Environment & Characteristics

In this work we use an eight module installation of the
bullion S platform, running RHEL 6.5 with a Linux kernel
version of 2.6.32. Each module (see Figure 1) is composed
of two sockets of 18 core Intel Haswell EX E7 8890 v3 pro-
cessors. Each core has private 32KB L1 data and instruction
caches and a private 256KB L2 unified cache. Each socket
has a 45MB shared inclusive LLC and a local NUMA region
comprising 512 GB of system memory. These specifications
result in a total of 288 cores in 16 distinct NUMA regions
sharing 8 TB of DRAM.

Information regarding the NUMA topology of a system
is typically available from the firmware via the OS. The
numactl --hardware command may be used to display
the information the OS provides to the runtime regarding
NUMA distances. As denoted in Table 2, the system has
three levels of NUMA distance. A coherence message may
travel within the local NUMA region, to the single near
remote NUMA region, i.e. the other NUMA region in the
local module, or to a far NUMA region in any of the remote
modules. Table 2 shows the three classes of NUMA distance
in the system. Besides the NUMA distances provided by
the firmware we measure the real latencies and memory
bandwidths available across the different NUMA distances
in the system. We use Intel’'s Memory Latency Checker
(MLC) [29] to measure the latencies and the STREAM bench-
mark [20] to measure the memory bandwidths. The average
latencies in the system (Table 2) follow the same pattern
and similar ratios to the NUMA distances in Table 2. On
average there is a 42% latency penalty in accessing memory
in the neighbouring NUMA region in the same module in
comparison to accessing memory in the local NUMA region.
There is a further latency penalty of 133% to access data
in far remote NUMA regions, i.e. any remote module (or
a 232% penalty for inter-module access compared to local
NUMA region access).

Table 2 also shows the average memory bandwidths
measured in the system for the STREAM Triad benchmark.
These results use all the threads available on a single socket
(18) to saturate the bandwidth to the memory of a given
NUMA region. On average these figures show there is a 39%
drop in bandwidth for accesses to a socket’s near remote
NUMA region. Accessing a far NUMA region incurs an 82%
lower available bandwidth than accessing the near NUMA
region. Comparing local and far accesses the bandwidth
penalty is 89%.

TABLE 2: NUMA distances and their average Bandwidths
and Latencies

Type Local Near Far
NUMA Distance 10 15 40
Average 13 25 46
Bandwidth (GB/s)
Min/M

in/Max 411/416 | 245/251 | 4.4/48
Bandwidth (GB/s)
Latency (Avg. ns) 125.6 178 416
Min/Max Latency (ns) | 124/127 177/180 410/428

4 MEMORY ALLOCATION AND SCHEDULING

In order to minimise the amount of coherence traffic re-
quired in the system for a given problem, we use a task-
based data-flow programming model. Such a programming
model is supported in OpenMP by new features introduced
in the OpenMP 4.0 release. In task-based data-flow pro-
gramming models the execution of a parallel program is
structured as a set of tasks and an execution ordering among
them based on data-flow constraints. The programmer iden-
tifies tasks by annotating serial code with directives. Data-
flow is represented by clauses in the directives which specify
what data is used by a task (called input dependencies) and
produced by each task (called output dependencies). The
runtime manages parallel execution of the tasks, relieving
the programmer from explicitly synchronising and schedul-
ing tasks and thus promoting programmability.

We use the OmpSs [11] task-based data-flow program-
ming model and its associated Nanos++ runtime system
to experiment with a diverse set of memory allocation and
scheduling regimes. The OmpSs programming model sup-
ports task constructs in a very similar way to OpenMP 4.0.
The task-based data-flow programming model supported
by both OpenMP 4.0 and OmpSs provide the potential to
implement NUMA-aware scheduling in the runtime system.
The Nanos++ runtime system already supports NUMA-
aware scheduling [4] in the release we use, version 0.10.3.

The default (NUMA-oblivious) OmpSs runtime sched-
uler maintains one global queue of ready tasks for the entire
SMP system. Tasks are scheduled among cores without con-
sidering where their data dependencies reside. In contrast,
the NUMA-aware OmpSs scheduler maintains one ready
queue per NUMA region within the SMP system. Tasks are
enqueued in the NUMA region in which the largest pro-
portion of their data dependencies reside. The runtime sys-
tem must already store meta information (address, whether
the dependency is input/output/inout etc.) about all data
dependencies in order to correctly synchronise the execu-
tion of tasks. In the NUMA aware scheduler the runtime
additionally stores the location of each data dependency
within the NUMA topology when the data is first tied to
a physical memory location. When scheduling subsequent
tasks the runtime system examines the data dependencies
of each task to calculate which NUMA region contains the
largest proportion of each task’s data dependencies. Each
task is then added to the ready queue of the NUMA region
which has the largest amount of data required by the task.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 5

If an execution suffers from load imbalance the Nanos++
runtime system overcomes this via NUMA aware work
stealing [1]. Should a worker thread lay idle for a certain pe-
riod of time the worker will steal work from another NUMA
region. In order to minimise the NUMA cost associated with
this work stealing, the worker will only steal from its nearest
neighbouring NUMA region and not from any more remote
regions. In the case of the system we use, this means that
during work stealing a worker thread will only steal work
from the other socket in the same module, and will not steal
work from remote modules (and thus not impact the inter-
module coherence traffic we measure at the BCS).

We use three regimes of task scheduling and memory al-
location, described below, to analyse the impact of NUMA-
aware scheduling on the coherence traffic classes defined in
Section 2.

4.1 Scheduling & Memory Allocation Regimes

The OmpSs features described above allow us to define
several execution regimes of task scheduling and memory
allocation:

Default scheduling & First Touch allocation (DFT):
Tasks are scheduled in a NUMA-oblivious fashion among
all the utilised cores in the system, ensuring load is bal-
anced. Data is allocated in the NUMA region of the core
where the data is first touched, via the Linux first touch
memory allocation policy. In a worst case scenario, all
data may be allocated in a single NUMA region, leaving
others entirely unused. Tasks using the allocated data are
scheduled among all the utilised cores systemwide without
any consideration for where their required data resides.

Default scheduling & Interleaved allocation (DI):
Tasks are scheduled in a NUMA-oblivious fashion, as in
DFT, ensuring load is balanced. Nevertheless, data alloca-
tion is uniformly distributed among all the NUMA regions
in the system. This is achieved with the Linux NUMA inter-
leaved memory allocation policy which distributes allocated
memory among all NUMA regions at a page granularity,
regardless of what core first touches the data. Data is
guaranteed to be uniformly distributed among all NUMA
regions in the system (at page granularity). However, tasks
using allocated data run without any consideration for
where their data dependencies reside.

NUMA-Aware scheduling & First Touch allocation
(NAFT): Tasks are scheduled in a NUMA-aware fashion.
The application’s memory allocating code is encapsulated
in tasks by the programmer. The runtime system automat-
ically [1] recognises tasks which first touch data (the first
tasks specifying the data an an output) and schedules them
in a uniformly distributed arrangement among the NUMA
regions. Each task allocates all its data locally in the NUMA
region it runs in due to the use of the Linux first touch
memory allocation policy. Memory is therefore guaranteed
to be uniformly distributed among all NUMA regions in the
system (at a per first touching task granularity, determined
by the programmer). Tasks using the allocated data are
scheduled on cores in the NUMA region where the majority
of their data dependencies reside.

A regime utilising NUMA-aware scheduling & inter-
leaved allocation is not a valid combination as it would lead

to conflicting responsibilities for distributing data allocation
at both the OS and runtime system level. This would render
the NUMA-aware scheduling ineffective.

5 BENCHMARKS

We chose five benchmarks for use in our evaluations, repre-
sentative of important problems in both high performance
and data centric computing, with significantly different
data access patterns. Streamcluster is from the PARSEC
benchmark suite [3], we also use benchmarks based on the
Cholesky Decomposition [1], Symmetric Matrix Inversion
[1], the Jacobi Method, and the computation of Integral
Histograms. All benchmarks exhibit a complex data access
pattern comprising both reads and writes, except Stream-
cluster which uses a streaming read data access pattern.

Cholesky uses a tile-based algorithm for the Cholesky
factorisation problem in linear algebra which exposes fine
grained parallelism and is implemented in the task-based
OmpSs programming model.

Symmetric Matrix Inversion (SMI) is a larger linear
algebra problem that inverts a symmetric matrix in three
stages. It also follows a tile-based algorithm thus exposing
fine grained parallelism. It is implemented in the task-
based OmpSs programming model. In Both Cholesky and
SMI We use a matrix sufficiently large (59136 rows) that
the benchmark’s performance does not benefit from further
increasing the problem size. We use a tile size of 768 in both
the Cholesky and SMI benchmarks.

PARSEC Streamcluster is based on the online clustering
problem and is part of the PARSEC benchmark suite [3].
This problem organises large volumes of continuously pro-
duced streaming data in real-time with applications in areas
such as network intrusion detection, data mining and pat-
tern recognition. The benchmark is dominated by a stream-
ing read data access pattern and is adapted to a task-based
implementation in the OmpSs programming model [11]. In
order to aid scalability to such a large SMP system size
as used in this work we employed a customised input set,
larger than the largest ("native”) input set provided by the
PARSEC benchmark documentation. The custom input set
parameters we use in this work are: Min. number of centres
allowed: 10, Max. number of centres allowed: 20, Dimension
of each data point: 128, Number of data points: 7.2 million,
Number of data points to handle per step: 1.44 million,
Maximum number of intermediate centres: 5000.

Jacobi is an implementation of the Jacobi algorithm for
solving a system of linear equations. It is implemented
using a two dimensional Jacobi five-point stencil compu-
tation. The implementation synchronises at the end of each
iterative step towards convergence, however there are no
synchronisation requirements among the tasks that a single
iterative step is decomposed into. The algorithm decom-
poses each iteration’s two dimensional data into blocks by
row. The input problem size used in our results is 6400
blocks of double precision floating point values, each block
having dimensions of 800 x 20000.

Integral Histogram computes a cumulative histogram
for each pixel of an image. With this measure one can find
the histogram of a Cartesian region of pixels in constant
time. The histogram is used by several techniques in digital

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Speedup

Speedup

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Parallel and Distributed Systems

(d) Jacobi

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 6
10 6 6
8 5 5
6 o 4 =3 4
4 : 3 o

/ QN‘_._‘ o 2 o 2

) n
Z/M 1 \-’—.\-\-\-—-—' 1a
(‘)'o V > O DD oA O D Ob V > O DD oA O D 0@ V> O DO L oA (O D
N‘bb%»’b,&b@%‘bqﬁoq‘}) '\r’b‘b%»’lx,\@)@(ﬁb(ﬁor& N’b‘b%»’b»‘b@(&,ﬁoqﬁb
(a) Cholesky (b) SMI (c) Streamcluster
10 8
7
8 6
6 = 5
g 4 mDFT

! & 3 L - DI
’ D NAFT
-/..—-l-"': —— 1 o—
O‘"o V> O DO A O D 90 V> O DO A O D
P AL PSS © AL PSSP

(e) Integral Histogram

Fig. 2: Speedup DFT, DI, NAFT regimes under increasing thread count. Threads distributed uniformly among all available

NUMA regions. Figures normalised to DFT with 16 threads.

image processing and computer vision. We use an image
size of 65536 x 65536 pixels with block size 512 x 512 pixels
to compute a histogram with 32 bins.

All benchmarks are run on core counts ranging from
16 (1 thread per NUMA region) to 288 (18 threads per
NUMA region). The utilised threads are always distributed
uniformly across the 16 NUMA regions in the system.
All performance and coherence traffic measurements are
repeated three times and the mean values reported.

6 RESULTS AND ANALYSIS
6.1

In this section we present a detailed analysis of the coher-
ence traffic generated by running the benchmarks presented
in Section 5 on different numbers of cores on the bullion
S system. We present results for the benchmarks under the
three regimes detailed in Section 4.1 : DFT, DI and NAFT.
First, in Section 6.2 we present a decomposition of the
coherence traffic into the two Data message classes (DWB
and DTC) plus aggregate Control traffic (which comprises
SNP, HRSP, HREQ and NDR). Secondly, in Section 6.3 we
present a detailed breakdown of the Control traffic type
into its individual message classes. Thirdly, in Section 6.4
we focus on how uniformly the systemwide resources are
utilised by each regime in terms of coherence traffic and
how this relates to performance and energy efficiency.

For each benchmark, thread count and execution regime,
we present the coherence traffic profile in two views, both
measured at the BCS (see Section 3.1 for the site of mea-
surement and precisely which coherence traffic we mea-
sure): (1) the bandwidth utilised by coherence traffic during
benchmark execution, called Coherence Bandwidth, and (2)

Introduction

the total coherence traffic data moved over the entire course
of the benchmark execution, called Coherence Movement. The
coherence bandwidth and coherence movement views are
related via the execution time as coherence bandwidth is the
coherence movement per second of execution time. Figures
3 to 7 show the systemwide (i.e. all 8 modules aggregated)
coherence traffic. In Figures 3 to 7, the traffic’s directionality
split (see Section 3.1) is presented as a pair of bars in the
figure for each combination of thread count and regime
labelled on the X axis - in all figures the left bar of the
pair is the incoming traffic (from its local sockets towards
the BCS) and the right bar of the pair is the outgoing traffic
(from the BCS to its local sockets). The maximum achievable
bandwidth through all 8 BCS in the system measured by the
synthetic STREAM benchmark [20] is 275 GB/s incoming
and outgoing simultaneously.

To place the coherence traffic analysis that follows in
a performance context Figure 2 shows the speedup for
each benchmark and regime combination at varying thread
counts on the bullion S system. These speedup figures use
the DFT regime at a thread count of 16 (i.e. 1 thread per
socket) as the baseline (equal to 1 in Figure 2) and are
discussed in Section 6.2.

For the purpose of our results and in order to clearly
distinguish between the two, we term measurements of
bandwidth travelling via the BCS on the inter-module link
as coherence bandwidth and the bandwidth to local memory
within each NUMA region summed systemwide as the
memory bandwidth. It is important to note that in a cNUMA
architecture the memory bandwidth is distributed among
the NUMA regions of the system. If the number of NUMA
regions in a system is R and a workload allocates memory
in only K < R NUMA regions the maximum availability

Transactions on Parallel and Distributed Systems

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR

NN B
NN & -
NN/ oL
7/§ © A
6
N
N7/ 33
N I
N\ © =
N\ 277000 ©
N o
N
N
N K
N/ o F
N\ N
N 9
Nz, —
o o o o o
S ® &« 4

s/d9

N/ 3
//§2

mm§§
16 96
NAFT

N K
////§\\\i &

i

6

DI

(b) SMI

Oww

16 96 288 16 9
DFT

200
150
0

50

NN B

.
N o
N\ ©

16 96 288 16
DFT

0@&%

(c) Streamcluster

250

(a) Cholesky

250

7 Total Control
NDTC
mDWB

NAFT

i
i
i
1
|
|

16 96 288

S\ —
N\
N\ o ~

NN —

N g
N
N
N B
o o o o
n o n

— —

200

s/d9

NAFT

16 96 288

NN E
SN N
S\ - o ~
N\t - ©
N F
N K
NN
NN e
N F
NN g
N .
N
o o o o
g%

200

s/d9

20000

(e) Integral Histogram
Fig. 3: Coherence Bandwidth: DWB, DTC and Control traffic

30000
25000
20000
m 15000

(d) Jacobi

12000
10000

NN
N e
NN e
N\ > <
N ™=
‘ N B
N\ g
N
NN A
NN
N m
N n
N K
NN
N\ e
N\ © o
N\
N -
o o

1500
m 10000
5000

N/ 3

v
§§@@§
28
NAFT

////§\\,\\\\\i
7//§§

16 96 288 16 96
DI

§§§§

N/ 23
NS
/§6F
N/ °© Qo

§

16

&

10000
5000

@@@@&@
16 96 288
NAFT

NN K

N\
N o -
//§ ©

§
N/ 23
N K
N In
//§9D

©
—

§

0§§

8000
6000
4000
2000

(c) Streamcluster

(b) SMI

10000

(a) Cholesky

10000

7 Total Control
NDTC
mDWB

16 96 288
NAFT

N F
NN S
N\ — o —
N
N
N —
N
N
N ey
N o
N .
SN =

8000,
2000

0
Oo
©o <

99

16 96 288
NAFT

NN /" 2
N\
N B
NN, B
N\ o
NS\ —
NN/
NV /" 2
N\ = ol
NN B
WY,
NN =
8 8 8 g ©°
8 8 8 8
® © ¥ «

a9

LLCs in order to enable replacing an entry in the directory
at the BCS. If a workload does not allocate memory among
all the modules in the system, only a limited fraction of
the systemwide BCS capacity resources are utilised, which
may negatively impact the system in both performance and
energy efficiency.

(e) Integral Histogram
Fig. 4: Coherence Movement: DWB, DTC and Control traffic

(d) Jacobi
of bandwidth to memory will be K/R times the systemwide

maximum possible. Similarly the system contains eight BCS,
one in each module. Each BCS implements a module level
mation for cache lines exported from that module to LLCs
in remote modules. As the directory at the BCS is strictly
inclusive of all cache lines exported from that module to

remote LLCs, if the directory in the BCS is under capacity
pressure this requires evictions of cache lines from remote

directory with finite capacity which stores directory infor-
1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 8

6.2 DWB, DTC and Control Coherence Traffic

Figures 3 and 4 show the measured traffic in coherence
bandwidth and coherence movement views respectively,
broken down into the two Data message classes, DWB
and DTC, and the Control message type which comprises
HREQ, SNP, HRSP and NDR.

When the two Data message classes, DWB and DTC are
summed together, the systemwide level of Data traffic is
symmetric in directionality. This symmetry reflects the fact
that messages belonging to these classes originate at either
a CPU cache or local memory within one module and travel
through the inter-module interconnect (via first the local
and then the remote BCS) to their respective memory or
cache destination in another module. When comparing the
incoming versus outgoing traffic for the two Data message
classes the total aggregate DWB and DTC traffic is always
symmetric in directionality.

6.2.1 Cholesky

The mix of both DWB and DTC message classes in the
traffic of the Cholesky benchmark demonstrates that this
benchmark requires a mixture of both read and write data
accesses across modules in the system. The DWB message
class represents modified cache lines being written back
from the LLC of one socket to memory in the cache line’s
home NUMA region in a remote module, while the DTC
message class represents data being delivered to a cache
originating from a remote module’s memory or LLC.

In terms of performance (Figure 2a) the DFT regime
scales poorly and does not benefit from using any additional
threads beyond 32. Between 32 and 96 threads, we see both
the DI and NAFT regimes perform similarly and already
significantly outperform the DFT regime. The DI regime
does not continue to scale past 96 threads whereas the NAFT
regime benefits from utilising up to 256 threads. As can be
seen in Figure 2a we achieve a maximum speedup of 7.8x at
256 threads versus the baseline.

If we discount the poorly performing DFT regime and
focus on the differences in coherence traffic between the DI
and NAFT regimes we can see a significant reduction both in
coherence bandwidth (Figure 3a) and coherence movement
(Figure 4a) under the NAFT regime versus the DI regime.

At 96 threads both regimes are performing similarly
(Figure 2a), and we see similar benefits in both coherence
bandwidth and coherence movement for the NAFT regime
over the DI regime: the NAFT regimes requires just 17%
of both the coherence bandwidth and coherence movement
required by the DI regime. Utilising all threads in the
machine the NAFT regime is performing 2.7x better than the
DI regime while also requiring only 25% as much coherence
bandwidth and 9.4% as much coherence movement as the
DI regime.

6.2.2 SMI

Like Cholesky, SMI also exhibits a significant proportion of
both DWB and DTC message classes in its traffic profile.
For SMI, the DFT regime scales poorly with no benefit
from using more than 32 threads (Figure 2b). Between 32
and 96 threads we see both the DI and NAFT regimes
performing well with a marginal edge in performance for

the DI regime. However, beyond 96 threads the DI regimes
performance deteriorates quickly while the NAFT regime
benefits from scaling up to 192 threads. The maximum
speedup we achieve is 4.9x at 192 threads versus the base-
line, and performance plateaus as we use more threads out
to the maximum of 288.

Again focusing on the difference between the better
performing DI and NAFT regimes in both the coherence
bandwidth and coherence movement views (Figures 3b
and 4b respectively), at 96 threads both the NAFT and DI
regimes are performing similarly (Figure 2b but the NAFT
regime requires only 59% of the coherence bandwidth and
58% of the coherence movement of the DI regime. At 288
threads the NAFT regime is performing 1.8x better than
the DI regime while requiring only 45% of the coherence
bandwidth and 25% of the coherence movement compared
to the DI regime.

6.2.3 Streamcluster

We can see from the traffic profile of the Streamcluster
benchmark (Figures 3c and 4c) that the vast majority of the
data traffic type is made up of the DTC coherence message
class and the DWB message class represent a negligible pro-
portion of the data traffic type. This reflects the streaming
read data access pattern of the Streamcluster benchmark.

We can see from Figure 2c that the DFT regime does
not scale well, never achieving a speedup beyond 1.9x the
baseline. At every thread count above the baseline of 16
threads we see the DI regime outperforms the DFT regime
and the NAFT regime in turn outperforms the DI regime.
The DI regime performs within a small margin of the NAFT
regime until 96 threads, beyond which the NAFT regime
maintains a significant performance gap over the DI regime.
The DI regime reaches its maximum speedup of 3.9x over
the baseline at 128 threads. The NAFT regime achieves its
maximum performance at 192 threads; a speedup of 5x the
baseline. For both the DI and NAFT regimes performance
degrades significantly as the benchmark scales to thread
counts beyond the optimally performing thread count.

If we compare the coherence traffic profiles for the two
best scaling regimes (DI and NAFT) we see that at 96 threads
although the performance advantage for the NAFT regime
over the DI regime is only 10%, the NAFT regime already
requires significantly less coherence bandwidth (Figure 3c)
and less coherence movement (Figure 4c), utilising only 75%
and 66% respectively of the traffic levels required by the DI
regime at this thread count.

Using all of the 288 threads available in the system,
we see that NAFT is outperforming DI by 1.9x. At this
thread count the NAFT regime consumes more coherence
bandwidth than utilised by the DI regime. However because
the NAFT regime’s performance is so much better than the
DI regime and its execution time is significantly shorter, it
completes the benchmark with only 74% of the coherence
movement of the DI regime.

6.2.4 Jacobi

Jacobi’s traffic profile contains a significant proportion of
both DWB and DTC message classes. Both the DI and DFT
regimes scale very poorly for this benchmark never achiev-
ing more than a 2x speedup versus the baseline, regardless

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 9

TABLE 3: Speedup and reduction in coherence movement
with 288 threads.

(a) NAFT regime in comparison to DFT regime

Benchmark Speedup DWB DTC Control Total
Cholesky 9.97x 94% -65% -63% -73%
SMI 6.76x -32% -30% -34% -31%
Streamcluster 3.14x 137% 63% -23% 26%
Jacobi 4.46x -99% -99% -99% -99%
IntHist 6.19x -99% -99% -99% -99%

(b) NAFT regime in comparison to DI regime
Benchmark Speedup DWB DTC Control Total
Cholesky 2.66x -98% -89% -86% -91%
SMI 1.81x 74% -76% -72% -75%
Streamcluster 1.91x 233% -29% -27% -25%
Jacobi 4.57x 99% -99% -99% -99%
IntHist 3.15x 99% -99% -99% -99%

of thread count. The NAFT regime significantly outperforms
both the DFT and DI regimes at all thread counts. The NAFT
regime shows a 1.9x speedup at the lowest thread count of
16 rising to a 6.9x speedup at 96 threads and a 8.2x speedup
at 288 threads versus the baseline.

At all thread counts the NAFT regime achieves a huge
reduction in the coherence bandwidth and coherence move-
ment required by the benchmark. In fact, at all thread counts
presented, the NAFT regime requires at most 1.1% of the
coherence bandwidth and 0.3% of the coherence movement
of either the DFT or DI regimes. This result shows that for
this benchmark the NAFT regime achieves an extremely
strong co-location of computation with its requisite data and
thus causes negligible inter-module coherence traffic.

6.2.5 Integral Histogram

Integral Histogram again shows a significant amount of
both DWB and DTC message classes in its traffic profile.
In this benchmark the DFT regime does not scale well at all
and never achieves a speedup beyond 1.4x the performance
baseline. The DI regime scales only marginally better than
DFT achieving a speedup of 2.2x at 128 threads. The NAFT
regime scales much better, achieving a speedup of 4.9x at 96
threads and continuing to scale well to 160 threads where
it reaches its highest speedup versus the baseline of 7.1x.
Although not the optimal configuration, at 288 threads the
speedup versus the baseline is still 6.4x.

Similarly to the Jacobi benchmark, the NAFT regime is
able to achieve an extremely strong locality of data accesses
with the Integral Histogram benchmark. The NAFT regime
never requires more than 1.8% of the coherence bandwidth
and 0.8% of the coherence movement of either the DFT or
DI regimes at any thread count.

6.2.6 Summary

In all five benchmarks the DFT regime is outperformed by
both the DI and NAFT regimes once more than 32 threads

are used. This reflects the fact that under the DFT regime,
memory is allocated in an unorchestrated fashion among
the 16 NUMA regions in the system. This may result in a
non-uniform distribution of the allocated memory among
the NUMA regions and therefore an underutilisation of
resources such as bandwidth to memory and the BCS direc-
tory capacity (as explained earlier in Section 6.1), one or both
of which may bottleneck the performance. This unbalanced
data distribution leads to an unbalanced computation as
tasks executing in all the remote modules compete for the
limited bandwidth available into the one or few modules
that contain the majority of the data, thus incurring high
latencies. This results in the DFT regime both performing
poorly and being able to use only a fraction of the total
inter-module bandwidth available across the system.

Neither the DI nor NAFT regime suffers from these
issues as both these regimes guarantee that their data is
allocated in a uniform manner among all NUMA regions
in the system. Considering the performance and coherence
traffic results we show for these two regimes we can see
that the capacity of the inter-module link now becomes a
limiting factor in the behaviour of these two regimes.

The maximum coherence bandwidth we see used in any
of the results we present is for the SMI benchmark and DI
regime at 288 threads, which uses 455 GB/s of coherence
bandwidth (sum of Incoming and Outgoing traffic). This
figure is close to the expected maximum capacity of the
inter-module link in the system.

Across all five benchmarks we see a significant benefit in
both performance and coherence movement for the NAFT
regime over the DI regime as we scale the thread count.
For Cholesky, SMI and Streamcluster (Figures 2a, 2b and
2c respectively) the NAFT regime performs similarly to the
DI regime until we reach 96 threads. As can be seen from
Figures 3a, 3b and 3¢, the coherence bandwidth used by the
DI regime for these three benchmarks at 96 threads is not yet
nearing the capacity of the inter-module link. This suggests
that at and below 96 threads neither the DI or NAFT regime
are limited by the capacity of the inter-module link. Rather,
they are limited by the relatively low (in relation to the di-
mensions of the inter-module and memory links) number of
available computational threads in the system. As we move
beyond 96 threads the much lower coherence bandwidth
required by the NAFT regime enables it to outperform
the DI regime. This is because the DI regime’s bandwidth
requirement approaches the capacity of the inter-module
link at high thread counts.

In the cases of both the Jacobi and Integral Histogram
benchmarks the NAFT regime outperforms both the DFT
and DI regimes right from the beginning of the scaling
analysis at 16 threads. We see for these two benchmarks
their coherence bandwidth requirements grow more quickly
under the DI regime than the other three benchmarks. As
can be seen from Figures 3d and 3e, the DI regime is already
using around 400 GB/s of coherence bandwidth at just
96 threads. The large amount of inter-module coherence
bandwidth required by these two benchmarks at the rela-
tively low thread count of 96 means the NAFT regime can
outperform the DI regime even at low thread counts due to
its significantly lower coherence bandwidth requirements.

A summary of the speedups and reductions in coherence

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR

10

70 60 14
60 ! 50 l 12
50 10 7z
g o) /.
40 7 L 8 /&
7 o 30 7 9 > 17
© g © 7 © 7 7.7
8 2 | w8 S I B W
’ %7 s 7.9 7 27
-S| | | | | I | A EA | [B | |
JrEaEEEzs K zsé ZEc= - Oﬁ§ﬁ S “
16 96 288 16 96 288 16 96 288 16 196 288 16 96 288 16 96 288 16 96 288 16 96 288 16 96 288
DFT DI NAFT DFT DI NAFT DFT DI NAFT
(a) Cholesky (b) SMI (c) Streamcluster
70 60
60 ; 50
> Iy o]
/N/§ 77 » 30 S BENDR
@ 2 7 g 3 ! 7 /
g iy Ly b 6 20!§/§; !§5§2§ aSNP
ouatlilaaalil aulanutllE
______ s N I e
0 16 196 288 16 96 288 16 96 288 0 16 96 288 16 96 288 16 96 288
DFT DI NAFT DFT DI NAFT
(d) Jacobi (e) Integral Histogram
Fig. 5: Coherence Bandwidth: Control traffic by message class
3000 8000 6000
7000
2500 5000
2000 l! 0000 ! 40002 Z Z
7 5000 > .97
Z g 7 9 Vn7-9-1
m 1500 7 m 4000 . m 300070 LSO
° 1000 B 2§ © 3000 Z§ ® 20002§2§2§2§2§2§7%7/g2\
o0 2%%% ¢§/ 2000 !%2% Z - 000 419272 \¢§4§?§
aaizzal e | P T T
7 \\ > 1000
el |] | | S cEemmmzzZENNZEz=E 0
16 96 288 16 96 288 16 96 288 16 96 288 16 96 288 16 96 288 16 96 288 16 96 288 16 96 288
DFT DI NAFT DFT DI NAFT DFT DI NAFT
(a) Cholesky (b) SMI (c) Streamcluster
3000 2000
2500
SN TN l!l! l!l l
il |
7 /!/ \' Zig | 2 ®NDR
5 s WO g 1o/ ARSI R RN
el e RSP
1000 Z%?%%%g%%%?% 500 %\¢\?\/ /\/\ = SNP
il thilalihls
0 16 96 288 16 96 288_16_796 288 0 16 96 288 16 96 288-1(:5&?61583
DFT DI NAFT DFT DI NAFT
(d) Jacobi (e) Integral Histogram

Fig. 6: Coherence Movement: Control traffic by message class

traffic is presented in Tables 3a and 3b. Table 3a shows
the results for the NAFT regime in comparison to the DFT
regime, while Table 3b shows the results for the NAFT
regime in comparison to the DI regime.

In all cases in Tables 3a and 3b we see the NAFT regime
outperforming the baseline it is compared against. Only
in Streamcluster comparing NAFT to DFT do we see an
increase in total coherence traffic (26%). In this case, despite
the slightly increased coherence traffic, the NAFT regime

is outperforming the DFT regime by 3.1x. We explore the
reasons for the very poor performance of the DFT regime
further in Section 6.4. Comparing the two best performing

regimes (Table 3b), we see reductions in coherence move-

ment ranging between 25% and 99%. The ability of the
NAFT regime to reduce coherence traffic depends strongly
on the spatial contiguity of the data dependencies of the
tasks. While the NAFT regime will schedule a task local
to the NUMA node containing the largest proportion of its

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 11

required data, depending on the number, size and layout of
the data dependencies of the task, some degree of remote
NUMA accesses may be required, as is the case in Stream-
cluster and to a lesser extent SMI.

The large reductions in coherence traffic achieved by
the NAFT regime and summarised in Tables 3a and 3b
have important implications for energy efficiency which is a
crucial factor in the way future computing architectures and
software stacks are designed [7], [12], [15], [27].

6.3 Control Coherence Traffic Decomposition

Figures 5 and 6 show the coherence bandwidth and coher-
ence movement for all three benchmarks for the Control
coherence traffic type in isolation, now decomposed into the
individual Control message classes HREQ, SNP, HRSP and
NDR. In broad terms we see a similar relationship between
the levels of Control traffic under the different regimes as
we did in the overall traffic profile in Figures 3 and 4 (which
includes the Data message types).

In the Control message classes we see asymmetry be-
tween the incoming and outgoing traffic for all four message
classes. In the HREQ, SNP, HRSP and NDR Control message
classes we observe significant asymmetries between incom-
ing and outgoing traffic in certain instances, the reasons for
which we already outlined in Section 3. We see very obvious
asymmetries between incoming and outgoing traffic for
both the SNP and HRSP message classes across all five
benchmarks. In all cases the asymmetry between incoming
and outgoing traffic for the SNP message class manifests
itself as a much larger level of SNP messages in the incom-
ing traffic (incoming to the BCS from its local CPU sockets)
compared to the outgoing traffic (outgoing from the BCS
towards its local CPU sockets). In the case of HRSP (which
is a reciprocal message to SNP in a coherence transaction)
we see the reverse case, that is, we see a much larger amount
of HRSP traffic in the outgoing traffic compared to the
incoming traffic.

These asymmetries in the SNP and HRSP traffic repre-
sent cases where the action of the BCS in the coherence
protocol is having a significant impact on the SNP and
reciprocal HRSP traffic. The BCS is often able to filter SNP
messages it receives from its local CPUs from the system and
answer the SNP message directly, without forwarding the
SNP message on to any remote CPU in the system. Hence
the SNP message appears as incoming at some BCS but
never appears as outgoing at another BCS. We see the effect
of this in our results where generally we see the level of
incoming SNP traffic in the system is often much larger than
the level of outgoing SNP traffic. We see the exact reverse
in the HRSP traffic. In this case the BCS answers the SNP
message itself with a HRSP and hence this HRSP appears as
outgoing from a BCS. Because the HRSP has originated at
the BCS (and not a remote CPU) it appears as an outgoing
HRSP message which does not have any matching incoming
HRSP message elsewhere in the system.

In Figures 5 and 6 we also see asymmetry between the
incoming and outgoing traffic for the NDR message class.
This is particularly pronounced across all thread counts and
regimes in the Streamcluster benchmark but is also apparent
in the results for the other benchmarks to some degree.

This is for the reason explained in Section 3, namely that
when sending NDR messages the BCS optimises for latency
by always sending explicit NDR messages while the CPU
optimises for bandwidth by piggybacking NDR messages
on unused bits in Data messages.

6.4 Traffic Symmetry Over Modules

Figure 7 shows the distribution of the coherence movement
among the modules for each benchmark at each of the
three thread counts and three regimes of data allocation and
work scheduling (split into a pair of bars, left for incoming
and right for outgoing traffic, as presented in the previous
coherence traffic figures). Each bar in these boxplots is
constructed from 8 datapoints, namely the total per-module
traffic for each of the 8 modules in the system. Each bar in
the boxplot features a low and high whisker for the lowest
and highest traffic recorded among the 8 modules and the
median value among all 8 modules marked in orange inside
a box. The lower and upper edges of this box represent the
first and third quartiles among the 8 modules respectively.

Under the DI and NAFT regime we see generally across
the benchmarks that the boxplot extends through a very
narrow range from the lower whisker to the upper whisker.
Under these two regimes, by definition the data required
by the benchmark is allocated in a uniform manner among
all the NUMA regions (and therefore all the modules) in
the entire system. This uniform data allocation is handled
at the OS level at a page allocation granularity under the
DI regime. Under the NAFT regime it is handled at a
per first touching task granularity by the runtime system.
These allocation mechanisms are explained in more detail
in Section 5. Due to the uniform allocation of data around
the NUMA regions of the system under both these regimes,
we see the amount of coherence traffic per module spans a
very narrow range across the 8 modules in the system, i.e. it
is uniformly distributed.

All applications (except Jacobi) share a common pattern
of behaviour under the DFT regime. Under DFT, we see at 96
and 288 threads there is one outlier module which has much
higher traffic than the other 7 modules in the system. The 7
modules other than the one outlier remain closely clustered
around a common value. This is due to the fact that under
the DFT regime the data allocation of the benchmark is
not orchestrated in any manner, and depends largely on
the interaction between the benchmark application code,
runtime system and the underlying hardware topology.
Four benchmarks, Cholesky, SMI, Streamcluster and Inte-
gral Histogram, show a large range in levels of coherence
traffic across the 8 modules in the system under the DFT
regime. For these benchmarks a very large proportion of
the entire data allocation required by the benchmark occurs
within a single module, and very little data is allocated in
the other 7 modules in the system. This is demonstrated
by the fact that in the relevant boxplots, we see one outlier
at the top whisker of the boxplot bar which represents the
traffic occurring in the module where most of the data was
allocated. The other 7 modules have a much lower and quite
uniform level of traffic (lower whisker, 1st quartile, median
and 3rd quartile values are all in a very narrow range).

We also note that for the four benchmarks excepting
Jacobi this large range is evident only under the two

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE
Transactions on Parallel and Distributed Systems

|IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 12
2000 - 12000 -
5000 -
1800 2500 10500 -
1200 4 4200] oo]
. 3500 -
- 1200 - o= 3000 g3 7500
288 T 2000 4500 -
T == 1500 3000 -
4004 1 1000 - . 21| . ccce1
2001~ ~- eomo=2 500{==="""__== Ia2__ 1508: 1]s s==-®"
16| 96 |288‘ 16| 96 |288‘ 16| 96 |288 16 96 |288‘ 16| 96 |288‘ 16| 96 |288 16 96 |288‘ 16 96 |288‘ 16| 96 |288
DFT DI NAFT DFT DI NAFT DFT DI NAFT
(a) Cholesky (b) SMI (c) Streamcluster
1200 4 = 2200 -
e_=gU3.__"= 2000
1000 1800 -
1600
5 o R E
© 600 1 01888—5¢ 1 -__1z
400 - 800 1
200 400 A
200
0 - - e e 0 - —— e mm e e
16| 96 |288‘ 16| 96 |288‘ 16| 96 |288 16 96 |288‘ 16 96 |288‘ 16| 96 |288
DFT DI NAFT DFT DI NAFT
(d) Jacobi (e) Integral Histogram

Fig. 7: Coherence Movement distribution by module

larger thread counts of 96 and 288 threads and is not as
pronounced when using 16 threads. The reason for the
disparity in behaviour among the different thread counts
within the DFT regime is that at 16 threads, there is only
1 thread executing in each NUMA region. In this thread
configuration the relative lack of available threads causes
tasks that allocate data to be forced to distribute themselves
among the modules in the system in order to find an
available thread on which to run. This results (by chance) in
a relatively uniform distribution of data among the NUMA
regions in the machine. Under the two higher thread counts
of 96 threads and 288 threads, there are 6 and 18 threads
per NUMA region respectively. These two configurations
provide enough available threads in just one module (12 or
36 threads in these cases) in which to execute the majority
of the data allocating tasks, resulting in the non-uniform
distribution of data among the modules.

As outlined earlier in Section 6.1 if there is an uneven
allocation of data among the NUMA regions in the system,
this results in an underutilisation of resources which are
distributed in the system such as capacity in the BCS di-
rectory and bandwidth to the system memory. In both these
cases the total systemwide resource is distributed 1/8th in
each of the 8 modules of the system. Therefore, as Figure 7
demonstrates in certain cases under the DFT regime almost
the entire data allocation for the benchmark occurs within a
single module. In such cases the execution is limited to using
1/8th of the systemwide bandwidth to memory and BCS
capacity available. Lack of either of these two resources can
very quickly limit performance as the thread count utilised
across the machine is scaled up.

7 RELATED WORK

Intel’s recent Xeon CPUs use the Intel Quick Path Intercon-
nect (QPI) [16] specification to connect Caches and Memo-
ries. The Coherence Protocol utilised by QPI is the MESIF
protocol which is an extension of the well known MESI
protocol [25, p. 362]. The microarchitectural details of Intel’s
MESIF protocol remain unpublished, however Molka and
Hackenberg et al. gave insight [21] [13] into such details
via sophisticated synthetic benchmarking. Molka et al’s
work differs from ours in that it presents aggregated total
memory bandwidth and latency figures utilising synthetic
benchmarks whereas we characterise the traffic and memory
bandwidth utilised by real world benchmarks at the level of
individual coherence protocol message types.

There has been much recent work on simplifying cache
coherence systems to make them perform or scale better or
be more energy efficient. Choi et al. [9] proposed restraining
the shared memory programming model to enable improve-
ments in power, performance, simplicity and verifiability in
the coherence system. Manivannan et al. [17] [18] showed
how the runtime system and hardware coherence substrate
could co-operate to provide performance benefits by opti-
mising particular data access and sharing patterns in task-
based programming models. Hammond et al. [14] proposed
changing the memory consistency model to a transactional
model which allows for a less complex coherence system.
All these papers utilised a simulation based approach to
evaluate the impact of their designs on cache coherence
whereas in our work we make a detailed and direct char-
acterisation of the impact of a runtime managed approach
to reducing coherence traffic in a real system.

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 13

Regarding NUMA-aware data distribution and schedul-
ing Al-Omairy et al. [1] measured the performance benefits
of NUMA-aware scheduling for both the Cholesky and SMI
benchmarks versus the best state of the art implementations
that are widely used in modern production environments.
Muddukrishna et al. investigated [22] the performance im-
pacts of NUMA-aware scheduling and data distribution for
multiple real world benchmarks. Our work differs from
both these as it directly and in detail quantifies the effect
of NUMA-aware scheduling on coherence traffic and data
motion within the system, rather than performance. Other
recent work such as the Runnemede [7], SARC [26] and
Runtime Aware Architecture [8] [27] proposals follow a
hardware/software co-design approach to relaxing hard-
ware provided cache coherence and move responsibility for
dynamically managing disjoint memory spaces to software.

To the best of our knowledge our work is the first
to study the effects of NUMA-aware scheduling and data
allocation directly on cache coherence traffic in such a large,
real, SMP NUMA system.

8 CONCLUSIONS

NUMA architectures continue to dominate the SMP design
space and are likely to grow in prevalence and complexity
alongside the trend towards higher core counts and memory
capacity requirements and more functional heterogeneity
sharing memory. These developments bring challenges for
both computer architecture and software alike. In the ar-
chitecture design space the nature of the coherence traffic
required to implement the ccNUMA design is an important
factor in balancing the demands of energy efficiency and
performance in the design.

In this work we directly characterise the coherence traffic
within a modern large SMP design at the granularity of
individual classes of coherence traffic using five important
benchmarks from the domains of high performance and
data centric computing. We show the balance between the
different types of coherence traffic (Data and Control traffic)
and further break these two types down into individual
message classes.

We show that a NUMA-aware regime of work schedul-
ing and data allocation managed by the runtime system,
while entirely absolving the programmer of NUMA con-
cerns, can provide very significant benefits in terms of both
performance and energy efficiency through reduced data
movement. This is true whether the baseline compared
against is an entirely NUMA-oblivious work scheduling and
data allocation regime, or a regime which is NUMA-aware
in data allocation but not in work scheduling.

Our results show that the NUMA-aware work schedul-
ing and data allocation NAFT regime is able to reduce the
coherence movement between 25% and 99% over and above
the DI scheme which allocates data in a NUMA-aware fash-
ion but does not perform NUMA-aware work scheduling.
This is an important result with a view to energy efficiency
and the way future ccNUMA hardware architectures and
the system software stacks they run are designed. Indeed,
as the trend for larger ccNUMA designs continues apace
the potential for our approach to benefit energy efficiency
and performance increases.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Government
(Severo Ochoa grants SEV2015-0493), by the Spanish Min-
istry of Science and Innovation (contracts TIN2015-65316-P),
by the Generalitat de Catalunya (contracts 2014-SGR-1051
and 2014-SGR-1272), by the RoMoL ERC Advanced Grant
(GA 321253) and the European HiPEAC Network of Ex-
cellence. The Mont-Blanc project receives funding from the
EU’s H2020 Framework Programme (H2020/2014-2020) un-
der grant agreement n°® 671697. M. Moret6 has been partially
supported by the Ministry of Economy and Competitiveness
under Juan de la Cierva postdoctoral fellowship number
JCI-2012-15047. M. Casas is supported by the Secretary for
Universities and Research of the Ministry of Economy and
Knowledge of the Government of Catalonia and the Cofund
programme of the Marie Curie Actions of the 7th R&D
Framework Programme of the European Union (Contract
2013 BP_B 00243).

REFERENCES

[1] R. Al-Omairy, G. Miranda, H. Ltaief, R. Badia, X. Martorell,
J. Labarta, and D. Keyes, “Dense matrix computations on NUMA
architectures with distance-aware work stealing,” Supercomputing
Frontiers and Innovations, vol. 2, no. 1, 2015.

[2] B. Atos. (2015) bullion s2 factsheet. [Online]. Available: https:
/ /atos.net/wp-content/uploads/2017/06 /bullion_s2_e7v3.pdf

[3] C.Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proc.
17th Int. Conf. Parallel Architectures Compilation Tech. (PACT'08),
2008, pp. 72-81.

[4]]. Bueno, X. Martorell, R. Badia, E. Ayguadé, and]. Labarta, “Im-
plementing ompss support for regions of data in architectures with
multiple address spaces,” in Proc. 27th Int. Conf. Supercomputers
(ICS’13), 2013, pp. 359-368.

[5] D. R. Butenhof, Programming with POSIX Threads.
Wesley Longman Publishing Co., Inc., 1997.

[6] P. Caheny, M. Casas, M. Moret6, H. Gloaguen, M. Saintes,
E. Ayguadé, J. Labarta, and M. Valero, “Reducing cache coherence
traffic with hierarchical directory cache and numa-aware runtime
scheduling,” in Proc. 25th Int. Conf. Parallel Architectures Compila-
tion Tech. (PACT’16), 2016, pp. 275-286.

[7] N. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dun-
ning, J. Fryman, I. Ganev, R. Golliver, R. Knauerhase, R. Lethin,
B. Meister, A. Mishra, W. Pinfold, J. Teller,]J. Torrellas, N. Vasi-
lache, G. Venkatesh, and J. Xu, “Runnemede: An architecture for
ubiquitous high-performance computing,” in Proc. 19th Int. Symp.
High Perf. Computer Architectures, 2013, pp. 198-209.

[8] M. Casas, M. Moret6, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes,
L. Jaulmes, O. Palomar, O. S. Unsal, A. Cristal, E. Ayguadé,
J. Labarta, and M. Valero, “Runtime-aware architectures,” in Proc.
21st Int. Conf. Parallel and Distributed Computing (Euro-Par'15), 2015,
pp. 16-27.

[9] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. Adve, V. Adve, N. Carter, and C. Chou, “Denovo: Rethinking
the memory hierarchy for disciplined parallelism,” in Proc. 20th
Int. Conf. Parallel Architectures Compilation Tech. (PACT'11), 2011,
pp- 155-166.

[10] A. Drebes, K. Heydemann, N. Drach, A. Pop, and A. Cohen,
“Topology-aware and dependence-aware scheduling and memory
allocation for task-parallel languages,” ACM Trans. Archit. Code
Optim., vol. 11, no. 3, pp. 30:1-30:25, 2014.

[11] A. Duran, E. Ayguadé, R. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: A proposal for programming het-
erogeneous multi-core architectures,” Parallel Process. Lett., vol. 21,
pp- 173-193, 2011.

[12] Y. Durand, P. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy,
G. Gaydadjiev,]. Goodacre, M. Katevenis, M. Marazakis, E. Matus,
I. Mavroidis, and J. Thomson, “EUROSERVER: Energy Efficient
Node for European Micro-Servers,” in Proc. 17th Euromicro Conf.
Digital System Design (DSD’14), 2014, pp. 206-213.

Addison-

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2787123, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 14

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

1045-9219 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

D. Hackenberg, D. Molka, and W. Nagel, “Comparing cache
architectures and coherency protocols on x86-64 multicore smp
systems,” in Proc. 42nd Int. Symp. Microarchitecture (MICRO’09),
2009, pp. 413-422.

L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun, “Transactional memory coherence and consistency,” in Proc.
31st Int. Symp. Computer Architecture (ISCA’04), 2004, pp. 102-113.
J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mabhesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel:
An architecture and scalable programming interface for a 1000-
core accelerator,” in Proc. 36th Int. Symp. Computer Architecture
(ISCA’09), 2009, pp. 140-151.

R. Maddox, G. Singh, and R. Safranek, Weaving high performance
multiprocessor fabric: architectural insights into the Intel QuickPath
Interconnect. Intel Press, 2009.

M. Manivannan, A. Negi, and P. Stenstrom, “Efficient forwarding
of producer-consumer data in task-based programs,” in Proc 42nd
Int. Conf. Parallel Processing, 2013, pp. 517-522.

M. Manivannan and P. Stenstrom, “Runtime-guided cache coher-
ence optimizations in multi-core architectures,” in Proc. 28th Int.
Parallel Distributed Processing Symp., 2014, pp. 625-636.

M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Commun. ACM, vol. 55, no. 7, pp. 78-89,
2012.

J. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE TCCA Newsletter, pp. 19-25,
1995.

D. Molka, D. Hackenberg, R. Schone, and M. Muller, “Memory
performance and cache coherency effects on an intel nehalem
multiprocessor system,” in Proc. 18th Int. Conf. Parallel Architectures
Compilation Tech. (PACT’09), 2009, pp. 261-270.

A. Muddukrishna, P. Jonsson, V. Vlassov, and M. Brorsson,
“Locality-aware task scheduling and data distribution on NUMA
systems,” in Proc. 9th Int. Workshop on OpenMP (IWOMP’13), 2013,
pp- 156-170.

“OpenMP: Application program interface, version 4.0,” 2013.
[Online]. Available: http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

A. Patel and K. Ghose, “Energy-efficient mesi cache coherence
with pro-active snoop filtering for multicore microprocessors,” in
Proc. Int. Symp. Low Power Electronics Design (ISPLED’08), 2008, pp.
247-252.

D. Patterson and J. Hennessy, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 1990.

A. Ramirez, F. Cabarcas, B. Juurlink, A. M, E. Sanchez, A. Azevedo,
C. Meenderinck, C. Ciobanu, S. Isaza, and G. Gaydadjiev, “The
SARC architecture,” IEEE Micro, vol. 30, no. 5, pp. 16-29, 2010.

M. Valero, M. Moret6, M. Casas, E. Ayguadé, and J. Labarta,
“Runtime-aware architectures: A first approach,” Supercomputing
frontiers and innovations, vol. 1, no. 1, 2014.

R. Vidal, M. Casas, M. Moret6, D. Chasapis, R. Ferrer, X. Martorell,
E. Ayguadé,]J. Labarta, and M. Valero, “Evaluating the impact of
OpenMP 4.0 extensions on relevant parallel workloads,” in Proc.
11th Int. Workshop on OpenMP (IWOMP'15), 2015, pp. 60-72.

V. Viswanathan, K. Kumar, and T. Willhalm. (2013) Intel memory
latency checker v2. [Online]. Available: https://software.intel.
com/en-us/articles/intelr-memory-latency-checker

Paul Caheny is a researcher at the Barcelona
Supercomputing Center and PhD candidate at
the Computer Architecture Department of UPC.
Prior to joining BSC Paul was a researcher in
HPC applications at Fujitsu Labs of Europe in
London. Paul received his BSc. degree in Com-
puter Applications from Dublin City University
and MSc. degree from University of Edinburgh.
His research interests include cache coherence
and the co-design of parallel architectures and
runtime systems.

Lluc Alvarez is a postdoctoral researcher at
the Barcelona Supercomputing Center (BSC).
He received his B.Sc. degree from the Univer-
sitat de les llles Balears (UIB) in 2006 and his
M.Sc. and Ph.D. degrees from the Universitat
Politecnica de Catalunya (UPC) in 2009 and
2015. His main research interests are parallel ar-
chitectures, memory systems and programming
models for high-performance computing.

Said Derradji is a hardware architect at Bull.
Said has been working first on several custom
ASIC design interconnecting processors and fo-
cusing on cache coherency. He also worked
on board design and participated on TERA-
100 system delivery in 2011 (ranking 9 in
Top500.0rg). Since 2012, he is working in the
hardware architecture team at Bull, which spec-
ified recently the open exascale supercomputer,
code-named SEQUANA. His areas of expertise
are on ASIC/FPGA design, HPC servers archi-
tecture and on high performance interconnect technology such as the
recently announced BXI (Bull Exascale Interconnect). He is BULLs
representative at PCI-SIG (PCI Special Interest Group) and IBTA (In-
finiBand Trade Association) consortiums.

Mateo Valero is full professor at Computer
Architecture Department, UPC and director at
BSC. He has published 700 papers and served
in organization of 300 international conferences.
His main awards are: Seymour Cray, Eckert-
Mauchly, Harry Goode, ACM Distinguished Ser-
vice, "Hall of Fame” member IST European Pro-
gram, King Jaime | in research, two Spanish Na-
tional Awards on Informatics and Engineering.
Honorary Doctorate: Universities of Chalmers,
Belgrade, Las Palmas, Zaragoza, Complutense
of Madrid, Granada and University of Veracruz. Professor Valero is a
Fellow of IEEE, ACM, and Intel Distinguished Research Fellow. He is a
member of Royal Spanish Academy of Engineering, Royal Academy of
Science and Arts, correspondent academic of Royal Spanish Academy
of Sciences, Academia Europaea and Mexican Academy of Science.

Miquel Moretd is a senior researcher at the
Barcelona Supercomputing Center (BSC). Prior
to joining BSC, he spent 15 months as a post-
doctoral fellow at the International Computer
Science Institute (ICSI), Berkeley, USA. He re-
ceived the B.Sc., M.Sc., and Ph.D. degrees from
UPC. His research interests include studying
shared resources in multithreaded architectures
and hardware-software co-design for future mas-
sively parallel systems.

Marc Casas is a senior researcher at the
Barcelona Supercomputing Center. Prior to this,
he spent 3 years as a post-doctoral fellow at
the Lawrence Livermore National Laboratory
(LLNL). He received his B.Sc. and M.Sc. de-
grees in mathematics in 2004 from the UPC and
the PhD in Computer Science in 2010 from the
Computer Architecture Department of UPC. His
research interests are high performance com-
puting, runtime systems and parallel algorithms.

