MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploration of underwater life with an acoustically controlled soft robotic fish

Author(s)
Katzschmann, Robert Kevin; DelPreto, Joseph Jeff; MacCurdy, Robert; Rus, Daniela L
Thumbnail
DownloadOceanic Soft Robotic Fish Manuscript v7.pdf (3.151Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Closeup exploration of underwater life requires new forms of interaction, using biomimetic creatures that are capable of agile swimming maneuvers, equipped with cameras, and supported by remote human operation. Current robotic prototypes do not provide adequate platforms for studying marine life in their natural habitats. This work presents the design, fabrication, control, and oceanic testing of a soft robotic fish that can swim in three dimensions to continuously record the aquatic life it is following or engaging. Using a miniaturized acoustic communication module, a diver can direct the fish by sending commands such as speed, turning angle, and dynamic vertical diving. This work builds on previous generations of robotic fish that were restricted to one plane in shallow water and lacked remote control. Experimental results gathered from tests along coral reefs in the Pacific Ocean show that the robotic fish can successfully navigate around aquatic life at depths ranging from 0 to 18 meters. Furthermore, our robotic fish exhibits a lifelike undulating tail motion enabled by a soft robotic actuator design that can potentially facilitate a more natural integration into the ocean environment. We believe that our study advances beyond what is currently achievable using traditional thruster-based and tethered autonomous underwater vehicles, demonstrating methods that can be used in the future for studying the interactions of aquatic life and ocean dynamics.
Date issued
2018-03
URI
http://hdl.handle.net/1721.1/114518
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Science Robotics
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Katzschmann, Robert K. et al. “Exploration of Underwater Life with an Acoustically Controlled Soft Robotic Fish.” Science Robotics 3, 16 (March 2018): eaar3449 © 2018 The Authors
Version: Author's final manuscript
ISSN
2470-9476

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.