Skip to main content
Log in

Development of structural methods for the study of complex dynamical systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We analyze a research direction related to the development of methods for study and design of complex system structures, a method founded by academician B.N. Petrov. The progress of structural design methods is outlined along four directions: the ordinal mapping method, structural design based on signal and state digraphs, the structural functions method, and design of nonlinear controller structures based on artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.G., Sintez regulyatorov mnogomernykh sistem (Controller Design for Multidimensional Systems), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  2. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control for Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.

    Google Scholar 

  3. Baranchuk, E.I., Vzaimosvyazannye i mnogokonturnye reguliruemye sistemy (Interconnected and Multicircuit Controllable Systems), Leningrad: Energiya, 1968.

    Google Scholar 

  4. Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automated Control Systems), Moscow: Nauka, 1975.

    Google Scholar 

  5. Bodner, V.A., Sistemy upravleniya letatel’nymi apparatami (Control Systems for Flying Vehicles), Moscow: Mashinostroenie, 1973.

    Google Scholar 

  6. Voronov, A.A., Ustoichivost’, upravlyaemost’, nablyudaemost’ (Stability, Controllability, Observability), Moscow: Nauka, 1979.

    Google Scholar 

  7. Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya: avtomaticheskoe regulirovanie nepreryvnykh lineinykh sistem (Fundamentals of Automated Control Theory: Automated Control for Continuous Linear Systems), Moscow: Energiya, 1980.

    Google Scholar 

  8. Vostrikov, A.S., Upravlenie dinamicheskimi ob”ektami (Control for Dynamic Objects), Novosibirsk: Novosib. Elektrotekhn. Inst., 1971.

    Google Scholar 

  9. Krasovskii, A.A., Sistemy avtomaticheskogo upravleniya poletom i ikh analiticheskoe konstruirovanie (Automated Flight Control Systems and Their Analytic Constructions), Moscow: Nauka, 1973.

    Google Scholar 

  10. Meerov, M.V., Sistemy mnogosvyaznogo regulirovaniya (Multiconnected Control Systems), Moscow: Nauka, 1965.

    Google Scholar 

  11. Meerov, M.V., Sintez struktur sistem avtomaticheskogo regulirovaniya vysokoi tochnosti (Structural Design for High Precision Automated Control Systems), Moscow: Nauka, 1967.

    Google Scholar 

  12. Morozovskii, V.G., Mnogosvyaznye sistemy avtomaticheskogo regulirovaniya (Multiconnected Automated Control Systems), Moscow: Energiya, 1970.

    Google Scholar 

  13. Netushil, A.V., Teoriya avtomaticheskogo upravleniya (Automated Control Theory), Moscow: Nauka, 1983.

    Google Scholar 

  14. Smagina, E.M., Voprosy analiza lineinykh mnogomernykh ob”ektov s ispol’zovaniem ponyatiya nulya sistemy (Analysis of Linear Multidimensional Objects with the Notion of a System Zero), Tomsk: Tom. Univ., 1990.

    Google Scholar 

  15. Sobolev, O.S., Metody issledovaniya lineinykh mnogosvyaznykh sistem (Studies in Linear Multiconnected Systems), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  16. Solodovnikov, V.V. and Tumarkin, V.N., Teoriya slozhnosti i proektirovanie sistem upravleniya (Complexity Theory and Control Systems Design), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  17. Tsypkin, Ya.Z., Osnovy teorii avtomaticheskikh sistem (Fundamentals of Automated Systems Theory), Moscow: Nauka, 1977.

    Google Scholar 

  18. Chinaev, P.I., Metody analiza i sinteza mnogomernykh avtomaticheskikh sistem (Analysis and Synthesis of Multidimensional Automated Systems), Kiev: Tekhnika, 1969.

    Google Scholar 

  19. Yanushevskii, R.T., Teoriya lineinykh optimal’nykh mnogosvyaznykh sistem upravleniya (Theory of Linear Optimal Multiconnected Control Systems), Moscow: Nauka, 1973.

    Google Scholar 

  20. Bohn, E.V., Design and Synthesis Methods for a Class of Multivariable Feedback Control System Based on Variable Methods, Trans. AIEE, 1962, no. 81, pp. 109–116.

    Google Scholar 

  21. Boksenbom, A. and Hood, R., General Algebraic Method Applied to Control Analysis of Complex Engine Types, NASA Tech. Rept. 980, 1950.

    Google Scholar 

  22. Chen, C.T., Linear System Theory and Design, New York: Holt, Reeinhart and Winston, 1984.

    Google Scholar 

  23. Desoer, C.A., Notes for a Second Course on Linear Systems, New York: Van Nostrand Reinhold, 1970.

    MATH  Google Scholar 

  24. Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.

    MATH  Google Scholar 

  25. Kavanagh, R.J., The Application of Matrix Methods to Multivariable Control Systems, J. Franklin Inst., 1957, vol. 262(9), pp. 349–367.

    MathSciNet  Google Scholar 

  26. Kwakernaak, H. and Silvan, R., Linear Optimal Control Systems, New York: Wiley, 1972.

    MATH  Google Scholar 

  27. MacFarlane, J.A.G., Complex Variable Methods for Linear Multivariable Feedback Systems, London: Taylor and Francis, 1980.

    Google Scholar 

  28. Mesarovic, M.D., The Control of Multivariable Systems, New York: Wiley, 1960.

    Google Scholar 

  29. Rosenbrock, H.H., State-Space and Multivariable Theory, London: Nelson, 1970.

    MATH  Google Scholar 

  30. Wolowich, W.A., Linear Multivariable Systems, New York: Springer-Verlag, 1974.

    Book  Google Scholar 

  31. Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer, 1979.

    Book  MATH  Google Scholar 

  32. Optimizatsiya mnogomernykh sistem upravleniya gazoturbinnykh dvigatelei letatel’nykh apparatov (Optimizing Multidimensional Control Systems for Gas Turbine Engines of Flying Vehicles), Shevyakov, A.A. and Mart’yanova, T.S., Eds., Moscow: Mashinostroenie, 1989.

    Google Scholar 

  33. Petrov, B.N., On Construction and Transformation of Structural Circuits, Izv. Akad. Nauk USSR, 1945, no. 12, pp. 1146–1162.

    Google Scholar 

  34. Zadeh, L.A. and Desoer, C.A., Linear System Theory: The State Space Approach, New York: McGraw-Hill, 1963. Translated under the title Teoriya lineinykh sistem. Metod prostranstva sostoyanii, Moscow: Nauka, 1970.

    MATH  Google Scholar 

  35. Mason, S.J. and Zimmerman, H.J., Electronic Circuits, Signals, and Systems, New York: Wiley, 1960. Translated under the title Elektricheskie tsepi, signaly i sistemy, Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  36. Zhuk, K.D., A Structural Design Method for Multiconnected Systems based on Signal Graphs, Avtom. Telemekh., 1965, no. 6, pp. 53–57.

    Google Scholar 

  37. Raitsyn, T.M., Sintez sistem avtomaticheskogo upravleniya metodom napravlennykh grafov (Synthesis of Automated Control Systems with the Method of Directed Graphs), Moscow: Energiya, 1970.

    Google Scholar 

  38. Kolpakova, N.P. and Petrov, B.N., Structural Design Methods for Multichannel Systems with Graph Theory, in Teoriya i metody postroeniya sistem mnogosvyaznogo regulirovaniya (Theory and Design Methods for Multiconnected Control Systems), Moscow: Nauka, 1973, pp. 18–38.

    Google Scholar 

  39. Babak S.F., Il’yasov B.G., and Rutkovskii V.Yu., A Method for Analytic Computation of Transition Function Coefficients in Multidimensional Systems, Dokl. Akad. Nauk USSR, 1986, vol. 290, no. 3, pp. 557–559.

    MathSciNet  Google Scholar 

  40. Bellert, S. and Woźniacki, H., The Analysis and Synthesis of Electrical Systems by Means of the Method of Structural Numbers, Warszawa: WNT, 1968. Translated under the title Analiz and sintez elektricheskikh tsepei metodom strukturnykh chisel, Moscow: Mir, 1972.

    Google Scholar 

  41. Shatikhin, L.G., Strukturnye matritsy i ikh primenenie dlya issledovaniya sistem (Structural Matrices and Their Applications for Systems Research), Moscow: Mashinostroenie, 1974.

    Google Scholar 

  42. Kron, G., Diakoptics, London: Macdonald, 1963. Translated under the title Issledovanie slozhnykh sistem po chastyam. Diakoptika, Moscow: Nauka, 1972.

    Google Scholar 

  43. Bodner, V.A., Ryazanov, Yu.A., and Shaimardanov, F.A., Sistemy avtomaticheskogo upravleniya dvigatelyami letatel’nykh apparatov (Automated Control Systems for Engines of Flying Vehicles), Moscow: Mashinostroenie, 1973.

    Google Scholar 

  44. Morozovskii, V.T., On Cross-Control for Multiconnected Automated Control Systems, in Teoriya i metody postroeniya sistem mnogosvyaznogo regulirovaniya (Theory and Design Methods for Multiconnected Control Systems), Moscow: Nauka, 1973, pp. 39–52.

    Google Scholar 

  45. Yuan, J.S.-C., Structural Instability of a Class of Decoupling Solutions, IEEE Trans. Automat. Control, 1977, vol. 22, no. 5, pp. 843–846.

    Article  MATH  Google Scholar 

  46. Pukhov, G.E. and Zhuk, K.D., Sintez mnogosvyaznykh sistem upravleniya po metodu obratnykh operatorov (Multiconnected Control Systems Design with the Method of Inverse Operators), Kiev: Naukova Dumka, 1966.

    Google Scholar 

  47. Petrov, Yu.P., Synthesis of Optimal Linear Systems under Implementability Constraints, Vestn. Mosk. Gos. Uni., 1978, no. 13, pp. 97–102.

    Google Scholar 

  48. Petrov, B.N., Babak, S.F., Il’yasov, B.G., and Yusupov, I.Yu., On the Structures of Linear Stationary Systems, Dokl. Akad. Nauk USSR, 1980, vol. 250, no. 1, pp. 55–58.

    MathSciNet  Google Scholar 

  49. Petrov, B.N., Il’yasov, B.G., and Kabal’nov, Yu.S., On the Synthesis of One Class of Automated Control Systems, Dokl. Akad. Nauk USSR, 1979, vol. 228, no. 3, pp. 542–545.

    MathSciNet  Google Scholar 

  50. Vasil’ev, V.I. and Shaimardanov, F.A., Sintez mnogosvyaznykh avtomaticheskikh sistem metodom poryadkovogo otobrazheniya (Multiconnected Automated Systems Design with the Method of Ordinal Mapping), Moscow: Nauka, 1983.

    Google Scholar 

  51. Vasil’ev, V.I., Gusev, Yu.M., Efanov, V.N., Krymskii, V.G., et al., Mnogourovnevoe upravlenie dinamicheskimi ob”ektami (Multilevel Control of Dynamical Objects), Moscow: Nauka, 1987.

    Google Scholar 

  52. Osnovy teorii mnogosvyaznykh sistem avtomaticheskogo upravleniya letatel’nymi apparatami (Fundamentals of the Theory of Multiconnected Automated Control Systems for Flying Vehicles. Textbook), Krasil’shchikov, M.N., Ed., Moscow: Mosk. Aviats. Inst., 1995.

    Google Scholar 

  53. Il’yasov, B.G., Munasypov, R.A., and Munasypova, E.S., Structural Design for Complex Dynamical Systems with the Method of Functional Structural Numbers, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1997, no. 3, pp. 3–11.

    Google Scholar 

  54. Intellektual’nye sistemy upravleniya i kontrolya gazoturbinnykh dvigatelei (Intelligent Control and Testing Systems for Gas Turbine Engines), Vasil’ev, S.N., Ed., Moscow: Mashinostroenie, 2008.

    Google Scholar 

  55. Galushkin, A.I., Fundamentals of Neural Control, Neirokomp’yutery: Razrabotka, Primenenie, Moscow: IPRZhR, 2002, no. 9, 10, pp. 87–106.

    Google Scholar 

  56. Vasil’ev, V.I. and Panteleev, S.V., Neural Control-a New Field in Control Theory for Complex Systems, Neirokomp’yutery: Razrabotka, Primenenie, Moscow: IPRZhR, 2005, no. 5, pp. 33–45.

    Google Scholar 

  57. Narendra, K.S. and Parthasarathy, R., Identification and Control of Dynamical Systems Using Neural Networks, IEEE Trans. Neural Networks, 1990, vol. 1, pp. 4–27.

    Article  Google Scholar 

  58. Narendra, K.S., Neural Networks for Control. Theory and Practice, Proc. IEEE, 1996, vol. 84, no. 10, pp. 1385–1405.

    Article  Google Scholar 

  59. Neirokomp’yutery v aviatsii (samolety) (Neurocomputers in Aviation (Aircraft)), Vasil’ev, V.I., Il’yasov, B.G., and Kusimov, S.T., Eds., (Neurocomputers and Their Applications), Moscow: IPRZhR, 2004, book 14.

    Google Scholar 

  60. Vasil’ev, V.I. and Il’yasov, B.G., Intellektual’nye sistemy upravleniya. Teoriya i praktika (Intelligent Control Systems. Theory and Practice), Moscow: Radiotekhnika, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Vasil’ev, B.G. Ilyasov, R.A. Munasypov, 2013, published in Avtomatika i Telemekhanika, 2013, No. 3, pp. 192–214.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, V.I., Ilyasov, B.G. & Munasypov, R.A. Development of structural methods for the study of complex dynamical systems. Autom Remote Control 74, 471–490 (2013). https://doi.org/10.1134/S0005117913030119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913030119

Keywords

Navigation