Skip to main content

On the rate of convergence to the stationary distribution in the single-server queuing systems

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For a version of the single-server infinite-buffer queuing system which is much more general than M/G/1, the results on the rate of convergence to the stationary mode were reviewed in brief. New sufficient conditions guaranteeing the polynomial estimate of the rate of convergence were established using the “Markovization” method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambos, N. and Walrand, J., On Stability of State-Dependent Queues and Acyclic Queuing Networks, Adv. Appl. Prob., 1989, vol. 21, no. 3, pp. 681–701.

    Article  MathSciNet  MATH  Google Scholar 

  2. Browne, S. and Sigman, K., Work-modulated Queues with Applications to Storage Processes, J. Appl. Prob., 1992, vol. 29, pp. 699–712.

    Article  MathSciNet  MATH  Google Scholar 

  3. Thorisson, H., The Queue GI/G/1: Finite Moments of the Cycle Variables and Uniform Rates of Convergence, Stoch. Process. Appl., 1985, vol. 19, no. 1, pp. 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  4. Thorisson, H., Coupling, Stationarity, and Regeneration, New York: Springer, 2000.

    Book  MATH  Google Scholar 

  5. Tuominen, P. and Tweedie, R.L., Exponential Decay and Ergodicity of General Markov Processes, J. Appl. Prob., 1979, vol. 16, no. 4, pp. 867–880.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sevast’yanov, B.A., Ergodic Theorem for the Markov Processes and Its Application to the Telephone Systems with Failures, Teor. Veroyat. Primen., 1957, vol. 2, no. 1, pp. 106–116.

    MathSciNet  MATH  Google Scholar 

  7. Veretennikov, A.Yu., On Ergodicity of the Queuing Systems with Infinite Number of Servers, Mat. Zametki, 1977, vol. 22, no. 4, pp. 561–569.

    MathSciNet  MATH  Google Scholar 

  8. Kelbert, M. and Veretennikov, A., On the Estimation of Mixing Coefficients for a Multiphase Service System, Queuing Syst., 1997, vol. 25, pp. 325–337.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dynkin, E.B., Markovskie Protsessy (Markov Processes), Moscow: Fizmatgiz, 1963.

    MATH  Google Scholar 

  10. Liptser, R.Sh. and Shiryaev, A.N., Stochastic Calculus on the Probabilistic Spaces with Filtrations, in Stokhasticheskoe ischislenie. Itogi nauki i tekhniki. Sovrem. probl. mat. Fundament. napravleniya (Stochastic Calculus. Resume of Science and Technology. Modern Probl. Mat. Fundamental Lines of Research), Moscow: VINITI, 1989, vol. 49, pp. 114–159.

    Google Scholar 

  11. Ethier, S.N. and Kurtz, T.G., Markov Processes: Characterization and Convergence, New York: Wiley, 1986.

    Book  MATH  Google Scholar 

  12. Davis, M.H.A., Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models, J. Royal Stat. Soc. Ser. B (Methodological), 1984, vol. 46, no. 3, pp. 353–388.

    MATH  Google Scholar 

  13. Etemadi, N., An Elementary Proof of the Strong Law of Large Numbers, Prob. Theory Relat. Fields, 1981, vol. 55, no. 1, pp. 119–122.

    MathSciNet  MATH  Google Scholar 

  14. Miller, H.D., Geometric Ergodicity in a Class of Denumerable Markov Chains, Z. Wahrsch., 1965, vol. 4, pp. 354–373.

    Article  Google Scholar 

  15. Neuts, M.F. and Teugels, J.L., Exponential Ergodicity of the M/G/1 Queue, SIAM J. Appl. Math., 1969, vol. 17, no. 5, pp. 921–929.

    Article  MathSciNet  MATH  Google Scholar 

  16. Veretennikov, A.Yu., On Polynomial Mixing and Convergence Rate for the Stochastic Differential and Difference Equations, Teor. Veroyat. Primen., 1999, vol. 44, no. 2, pp. 312–327.

    Article  MathSciNet  Google Scholar 

  17. Harris, T.E., The Existence of StationaryMeasures for CertainMarkov Processes, in Proc. Third Berkeley Symp. Math. Statist. Prob., Berkeley: Univ. Calif. Press, 1956, vol. 2, pp. 113–124.

    Google Scholar 

  18. Khas’minskii, R.Z., Ustoichivost’ sistem differentsial’nykh uravnenii pri sluchainykh vozmushcheniyakh ikh parametrov (Stability of Systems of Differential Equations under Random Perturbations of Their Parameters), Moscow: Nauka, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Yu. Veretennikov, 2013, published in Avtomatika i Telemekhanika, 2013, No. 10, pp. 23–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veretennikov, A.Y. On the rate of convergence to the stationary distribution in the single-server queuing systems. Autom Remote Control 74, 1620–1629 (2013). https://doi.org/10.1134/S0005117913100032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913100032

Keywords