Skip to main content
Log in

Bilevel stochastic linear programming problems with quantile criterion

  • Stochastic Systems, Queueing Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a setting for a bilevel stochastic linear programming problem with quantile criterion. We study continuity properties of the criterial function and prove the existence theorem for a solution. We propose a deterministic equivalent of the problem for the case of a scalar random parameter. We show an equivalent problem in the form of a two-stage stochastic programming problem with equilibrium constraints and quantile criterion. For the case of a discrete distribution of random parameters, the problem reduces to a mixed linear programming problem. We show results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stackelberg, H.F., Marktform und Gleichgewicht, Berlin: Springer-Verlag, 1934.

    Google Scholar 

  2. Bard, J., Practical Bilevel Optimization. Algorithms and Applications, Dordrecht: Kluwer, 1998.

    Book  MATH  Google Scholar 

  3. Dempe, S., Foundations of Bilevel Programming, Dordrecht: Kluwer, 2002.

    MATH  Google Scholar 

  4. Vicente, L.N. and Calamai, P.H., Bilevel and Multilevel Programming. A Bibliography Review, J. Global Optim., 1994, vol. 5, no. 3, pp. 291–306.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dempe, S., Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints, Optimization, 2003, vol. 52, no. 3, pp. 333–359.

    Article  MATH  MathSciNet  Google Scholar 

  6. Dempe, S., Bilevel Programming. A Survey, Preprint TU Bergakademie Freiberg, no. 2003-11, Fakultät für Mathematik und Informatik, 2003.

    Google Scholar 

  7. Yang, H. and Bell, M.G.H., Transportation Bilevel Programming Problems. Recent Methodological Advances, Transportation Res., B, 2001, vol. 35, no. 1, pp. 1–4.

    Article  Google Scholar 

  8. Abou-Kandil, H. and Bertrand, P., Government is Private Sector Relations as a Stackelberg Game. A Degenerate Case, J. Econom. Dynam. Control, 1987, vol. 11, no. 4, pp. 513–517.

    Article  MATH  MathSciNet  Google Scholar 

  9. Beresnev, V.L., Upper Bounds for Objective Functions of Discrete Competitive Facility Location Problems, J. Appl. Ind. Math., 2009, vol. 3, no. 4, pp. 419–432.

    Article  MathSciNet  Google Scholar 

  10. Nicholls, M.G., Aluminum Production Modeling is a Nonlinear Bilevel Programming Approach, Oper. Res., 1995, vol. 43, no. 2, pp. 208–218.

    Article  MATH  Google Scholar 

  11. Fortuny-Amat, J. and McCarl, B., A Representation and Economic Interpretation of a Two-Level Programming Problem, J. Oper. Res. Soc., 1981, vol. 32, no. 9, pp. 783–792.

    MATH  MathSciNet  Google Scholar 

  12. Jia, F., Yang, F., and Wang, S.-Y., Sensitivity Analysis in Bilevel Linear Programming, Syst. Sci. Math. Sci., 1998, vol. 11, no. 4, pp. 359–366.

    MATH  MathSciNet  Google Scholar 

  13. Strekalovsky, A.S., Orlov, A.V., and Malyshev, A.V., Numerical Solution of a Class of Bilevel Programming Problems, Numer. Anal. Appl., 2010, vol. 3, no. 2, pp. 165–173.

    Article  Google Scholar 

  14. Gruzdeva, T.V. and Petrova, E.G., Numerical Solution of a Linear Bilevel Problem, Comput. Math. Math. Phys., 2010, vol. 50, no. 10, pp. 1631–1641.

    Article  MathSciNet  Google Scholar 

  15. Strekalovsky, A.S., Orlov, A.V., and Malyshev, A.V., On Computational Search for Optimistic Solutions in Bilevel Problems, J. Global Optim., 2010, vol. 48, no. 1, pp. 159–172.

    Article  MATH  MathSciNet  Google Scholar 

  16. Patriksson, M. and Wynter, L., Stochastic Nonlinear Bilevel Programming, Technical report. PRISM, Université de Versailles—Saint Quentin en Yvelines, Versailles, France, 1997.

    Google Scholar 

  17. Christiansen, S., Patriksson, M., and Wynter, L., Stochastic Bilevel Programming in Structural Optimization, Struct. Multidisciplinary Optim., 2001, vol. 21, no. 5, pp. 361–371.

    Article  Google Scholar 

  18. Werner, A.S., Bilevel Stochastic Programming Problems. Analysis and Application to Telecommunications, Dr. Sci. Dissertation, Section of Investment, Finance and Accounting, Dept. of Industrial Economics and Technology Management, NUST, Norway, 2004.

    Google Scholar 

  19. Kibzun, A.I. and Kan, Yu.S., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

    MATH  Google Scholar 

  20. Chen, A., Kim, J., Zhong, Zh., et al., Alpha Reliable Network Design Problem, Transp. Res. Record. J. Tranportation Res. Board, 2007, no. 2029, pp. 49–57.

    Google Scholar 

  21. Katagiri, H., Uno, T., Kato, K., et al., Random Fuzzy Bilevel Linear Programming through Possibility-Based Value at Risk Model, Int. J. Machine Learning Cybern., October 2012.

    Google Scholar 

  22. Kibzun, A.I., Naumov, A.V., and Ivanov, S.V., Two-Level Optimization Problem for the Activities of a Railroad Transportation Hub, Upravlen. Bol’shimi Sist., 2012, no. 38, pp. 140–160.

    Google Scholar 

  23. Naumov, A.V. and Ivanov, S.V., The Problem of Investment Distribution in the Development of Different Fields of the Ground Space Complex, Elektron. Zh. “Tr. Mosk. Aviats. Inst.,” 2012, no. 50.

    Google Scholar 

  24. Norkin, V., On Mixed Integer Reformulations of Monotonic Probabilistic Programming Problems with Discrete Distributions, available online: http://www.optimization-online.org/DBHTML/2010/05/2619.html, 2010.

    Google Scholar 

  25. Ivanov, S.V. and Naumov, A.V., Algorithm to Optimize the Quantile Criterion for the Polyhedral Loss Function and Discrete Distribution of Random Parameters, Autom. Remote Control, 2012, vol. 73, no. 1, pp. 105–117.

    Article  Google Scholar 

  26. Kibzun, A.I., Naumov, A.V., and Norkin, V.I., On Reducing a Quantile Optimization Problem with Discrete Distribution to a Mixed Integer Programming Problem, Autom. Remote Control, 2013, vol. 74, no. 6, pp. 951–967.

    Article  Google Scholar 

  27. Kibzun, A.I., Norkin, V.I., and Naumov, A.V., Reducing the Two-Stage Probabilistic Optimization Problem with Discrete Distribution of Random Data, in Proc. Sci. Seminar in “Stochastic Programming and Applications,” Knopov, P.S., Zorkal’tsev, V.I., Ivan’o, Ya.M., et al., Eds., Irkutsk: Melentiev Inst. Energy Syst., Sib. Otd. Ross. Akad. Nauk, 2012, pp. 76–104.

    Google Scholar 

  28. Kall, P. and Wallace, S.W., Stochastic Programming, Chichester: Wiley, 1994.

    MATH  Google Scholar 

  29. Birge, J. and Louveaux, F., Introduction to Stochastic Programming, New York: Springer-Verlag, 1997.

    MATH  Google Scholar 

  30. Kibzun, A.I. and Naumov, A.V., Two-Stage Problems of Quantile Linear Programming, Autom. Remote Control, 1995, vol. 56, no. 1, part 1, pp. 68–76.

    MATH  MathSciNet  Google Scholar 

  31. Naumov, A.V. and Bobylev, I.M., On the Two-Stage Problem of Linear Stochastic Programming with Quantile Criterion and Discrete Distribution of the Random Parameters, Autom. Remote Control, 2012, vol. 73, no. 2, pp. 265–275.

    Article  Google Scholar 

  32. Eremin, I.I., Lineinaya optimizatsiya i sistemy lineinykh neravenstv (Linear Optimization and Systems of Linear Inequalities), Moscow: Akademiya, 2007.

    Google Scholar 

  33. Beer, K., Lösung großer linearer Optimierungsaufgaben, Berlin: Deutscher Verlag der Wissenschaften, 1977.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Ivanov, 2014, published in Avtomatika i Telemekhanika, 2014, No. 1, pp. 130–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, S.V. Bilevel stochastic linear programming problems with quantile criterion. Autom Remote Control 75, 107–118 (2014). https://doi.org/10.1134/S0005117914010081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117914010081

Keywords