Abstract
We propose a setting for a bilevel stochastic linear programming problem with quantile criterion. We study continuity properties of the criterial function and prove the existence theorem for a solution. We propose a deterministic equivalent of the problem for the case of a scalar random parameter. We show an equivalent problem in the form of a two-stage stochastic programming problem with equilibrium constraints and quantile criterion. For the case of a discrete distribution of random parameters, the problem reduces to a mixed linear programming problem. We show results of numerical experiments.
Similar content being viewed by others
References
Stackelberg, H.F., Marktform und Gleichgewicht, Berlin: Springer-Verlag, 1934.
Bard, J., Practical Bilevel Optimization. Algorithms and Applications, Dordrecht: Kluwer, 1998.
Dempe, S., Foundations of Bilevel Programming, Dordrecht: Kluwer, 2002.
Vicente, L.N. and Calamai, P.H., Bilevel and Multilevel Programming. A Bibliography Review, J. Global Optim., 1994, vol. 5, no. 3, pp. 291–306.
Dempe, S., Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints, Optimization, 2003, vol. 52, no. 3, pp. 333–359.
Dempe, S., Bilevel Programming. A Survey, Preprint TU Bergakademie Freiberg, no. 2003-11, Fakultät für Mathematik und Informatik, 2003.
Yang, H. and Bell, M.G.H., Transportation Bilevel Programming Problems. Recent Methodological Advances, Transportation Res., B, 2001, vol. 35, no. 1, pp. 1–4.
Abou-Kandil, H. and Bertrand, P., Government is Private Sector Relations as a Stackelberg Game. A Degenerate Case, J. Econom. Dynam. Control, 1987, vol. 11, no. 4, pp. 513–517.
Beresnev, V.L., Upper Bounds for Objective Functions of Discrete Competitive Facility Location Problems, J. Appl. Ind. Math., 2009, vol. 3, no. 4, pp. 419–432.
Nicholls, M.G., Aluminum Production Modeling is a Nonlinear Bilevel Programming Approach, Oper. Res., 1995, vol. 43, no. 2, pp. 208–218.
Fortuny-Amat, J. and McCarl, B., A Representation and Economic Interpretation of a Two-Level Programming Problem, J. Oper. Res. Soc., 1981, vol. 32, no. 9, pp. 783–792.
Jia, F., Yang, F., and Wang, S.-Y., Sensitivity Analysis in Bilevel Linear Programming, Syst. Sci. Math. Sci., 1998, vol. 11, no. 4, pp. 359–366.
Strekalovsky, A.S., Orlov, A.V., and Malyshev, A.V., Numerical Solution of a Class of Bilevel Programming Problems, Numer. Anal. Appl., 2010, vol. 3, no. 2, pp. 165–173.
Gruzdeva, T.V. and Petrova, E.G., Numerical Solution of a Linear Bilevel Problem, Comput. Math. Math. Phys., 2010, vol. 50, no. 10, pp. 1631–1641.
Strekalovsky, A.S., Orlov, A.V., and Malyshev, A.V., On Computational Search for Optimistic Solutions in Bilevel Problems, J. Global Optim., 2010, vol. 48, no. 1, pp. 159–172.
Patriksson, M. and Wynter, L., Stochastic Nonlinear Bilevel Programming, Technical report. PRISM, Université de Versailles—Saint Quentin en Yvelines, Versailles, France, 1997.
Christiansen, S., Patriksson, M., and Wynter, L., Stochastic Bilevel Programming in Structural Optimization, Struct. Multidisciplinary Optim., 2001, vol. 21, no. 5, pp. 361–371.
Werner, A.S., Bilevel Stochastic Programming Problems. Analysis and Application to Telecommunications, Dr. Sci. Dissertation, Section of Investment, Finance and Accounting, Dept. of Industrial Economics and Technology Management, NUST, Norway, 2004.
Kibzun, A.I. and Kan, Yu.S., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.
Chen, A., Kim, J., Zhong, Zh., et al., Alpha Reliable Network Design Problem, Transp. Res. Record. J. Tranportation Res. Board, 2007, no. 2029, pp. 49–57.
Katagiri, H., Uno, T., Kato, K., et al., Random Fuzzy Bilevel Linear Programming through Possibility-Based Value at Risk Model, Int. J. Machine Learning Cybern., October 2012.
Kibzun, A.I., Naumov, A.V., and Ivanov, S.V., Two-Level Optimization Problem for the Activities of a Railroad Transportation Hub, Upravlen. Bol’shimi Sist., 2012, no. 38, pp. 140–160.
Naumov, A.V. and Ivanov, S.V., The Problem of Investment Distribution in the Development of Different Fields of the Ground Space Complex, Elektron. Zh. “Tr. Mosk. Aviats. Inst.,” 2012, no. 50.
Norkin, V., On Mixed Integer Reformulations of Monotonic Probabilistic Programming Problems with Discrete Distributions, available online: http://www.optimization-online.org/DBHTML/2010/05/2619.html, 2010.
Ivanov, S.V. and Naumov, A.V., Algorithm to Optimize the Quantile Criterion for the Polyhedral Loss Function and Discrete Distribution of Random Parameters, Autom. Remote Control, 2012, vol. 73, no. 1, pp. 105–117.
Kibzun, A.I., Naumov, A.V., and Norkin, V.I., On Reducing a Quantile Optimization Problem with Discrete Distribution to a Mixed Integer Programming Problem, Autom. Remote Control, 2013, vol. 74, no. 6, pp. 951–967.
Kibzun, A.I., Norkin, V.I., and Naumov, A.V., Reducing the Two-Stage Probabilistic Optimization Problem with Discrete Distribution of Random Data, in Proc. Sci. Seminar in “Stochastic Programming and Applications,” Knopov, P.S., Zorkal’tsev, V.I., Ivan’o, Ya.M., et al., Eds., Irkutsk: Melentiev Inst. Energy Syst., Sib. Otd. Ross. Akad. Nauk, 2012, pp. 76–104.
Kall, P. and Wallace, S.W., Stochastic Programming, Chichester: Wiley, 1994.
Birge, J. and Louveaux, F., Introduction to Stochastic Programming, New York: Springer-Verlag, 1997.
Kibzun, A.I. and Naumov, A.V., Two-Stage Problems of Quantile Linear Programming, Autom. Remote Control, 1995, vol. 56, no. 1, part 1, pp. 68–76.
Naumov, A.V. and Bobylev, I.M., On the Two-Stage Problem of Linear Stochastic Programming with Quantile Criterion and Discrete Distribution of the Random Parameters, Autom. Remote Control, 2012, vol. 73, no. 2, pp. 265–275.
Eremin, I.I., Lineinaya optimizatsiya i sistemy lineinykh neravenstv (Linear Optimization and Systems of Linear Inequalities), Moscow: Akademiya, 2007.
Beer, K., Lösung großer linearer Optimierungsaufgaben, Berlin: Deutscher Verlag der Wissenschaften, 1977.
Author information
Authors and Affiliations
Additional information
Original Russian Text © S.V. Ivanov, 2014, published in Avtomatika i Telemekhanika, 2014, No. 1, pp. 130–144.
Rights and permissions
About this article
Cite this article
Ivanov, S.V. Bilevel stochastic linear programming problems with quantile criterion. Autom Remote Control 75, 107–118 (2014). https://doi.org/10.1134/S0005117914010081
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117914010081