Abstract
The game approach generalizing the traditional boosting scheme was applied to the construction of a polynomial algorithm for the well-known intractable problem of the minimal affine committee separating the finite subsets of the real linear space of a fixed dimensionality under an additional condition of generality of positions of the separated sets (MASC-GP(n) problem). It was shown that the proposed algorithm currently features a record guaranteed estimate of precision.
Similar content being viewed by others
References
Eremin, I.I., Mazurov, Vl.D., and Astaf’ev, N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya (Improper Problems Linear and Convex Programming), Moscow: Nauka, 1983.
Eremin, I.I., Protivorechivye modeli optimal’nogo planirovaniya (Contradictory Models of Optimal Planning), Moscow: Nauka, 1988.
Mazurov, Vl.D., Metod komitetov v zadachakh optimizatsii i klassifikatsii (Method of Committees in the Problems of Optimization and Classification), Moscow: Nauka, 1990.
Mazurov, Vl.D. and Khachai, M.Yu., Committee Constructions, Izv. Ural. Gos. Univ., 1999, vol. 14, pp. 76–108.
Khachai, M., Mazurov, V., and Rybin, A., Committee Construction for Solving Problems of Selection, Diagnostics, and Prediction, Proc. Steklov Inst. Math., 2002, No. S1, pp. S67–S101.
Khachai, M.Yu., Computational Complexity of the Minimum Committee Problem and Related Problems, Dokl. Math., 2006, vol. 73, no. 1, pp. 138–141.
Mazurov, Vl.D. and Khachai, M.Yu., Committees of Systems of Linear Inequalities, Autom. Remote Control, 2004, vol. 65, no. 2, pp. 193–203.
Mazurov, Vl.D. and Khachai, M.Yu., Parallel Computations and Committee Constructions, Autom. Remote Control, 2007, vol. 68, no. 5, pp. 912–921.
Kobylkin, K.S., Constraint Elimination Method for the Committee Problem, Autom. Remote Control, 2012, vol. 73, no. 2, pp. 355–368.
Mazurov, Vl.D., System Inequality Committees and the Pattern Recognition Problem, Kibernetika, 1971, no. 3, pp. 140–146.
Schapire, R. and Freund, Y., Boosting: Foundations and Algorithms, Cambridge: MIT Press, 2012.
Elster, K.-H., Reinhardt, R., Schäuble, M., and Donath, G., Einführung in die nichtlineare Optimierung, Leipzig: Teubner, 1977. Translated under the title Vvedenie v nelineinoe programmirovanie, Eremin, I.I., Ed., Moscow: Nauka, 1985.
Khachai, M., Computational and Approximational Complexity of Combinatorial Problems Related to the Committee Polyhedral Separability of Finite Sets, Patt. Recogn. Image Anal., 2008, vol. 18, no. 2, pp. 237–242.
Khachai, M. and Poberii, M., Complexity and Approximability of Committee Polyhedral Separability of Sets in General Position, Informatika, 2009, vol. 20, no. 2, pp. 217–234.
Freund, Y., Boosting a Weak Algorithm by Majority, Inform. Comput., 1995, vol. 121, pp. 256–285.
Gainanov, D.N., Novokshenov, V.A., and Tyagunov, L.I., On Graphs Generated by the Incompatible Systems of Linear Inequalities, Mat. Zametki, 1983, vol. 33, no. 2, pp. 293–300.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © M.Yu. Khachai, M.I. Poberii, 2014, published in Avtomatika i Telemekhanika, 2014, No. 4, pp. 81–93.
Rights and permissions
About this article
Cite this article
Khachai, M.Y., Poberii, M.I. Scheme of boosting in the problems of combinatorial optimization induced by the collective training algorithms. Autom Remote Control 75, 657–667 (2014). https://doi.org/10.1134/S0005117914040067
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117914040067