Skip to main content

Advertisement

Log in

A heuristic method for solving integer-valued decompositional multiindex problems

  • Models and Solution Methods for Problems in Theory of Scheduling
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider NP-hard integer-valued multiindex problems of transportation type. We distinguish a subclass of polynomially solvable multiindex problems, namely multiindex problems with decomposition structure. We construct a general scheme for a heuristic method to solve a number of similar NP-hard decompositional multiindex problems. For one version of implementation for this scheme, we estimate its deviation from the optimum. We illustrate our results with the example of designing a class schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afraimovich, L.G. and Prilutskii, M.Kh., Multiindex Optimal Production Planning Problems, Autom. Remote Control, 2010, vol. 71, no. 10, pp. 2145–2151.

    Article  MATH  MathSciNet  Google Scholar 

  2. Afraimovich, L.G. and Prilutskii, M.Kh., Multiindex Resource Distributions for Hierarchical Systems, Autom. Remote Control, 2006, vol. 67, no. 6, pp. 1007–1016.

    Article  MATH  Google Scholar 

  3. Prilutskii, M.Kh., Multicriterial Multiindex Problems of Volume-Calendar Planning, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2007, no. 1, pp. 78–82.

    Google Scholar 

  4. Prilutskii, M.Kh., Multicriterial Distribution of a Homogeneous Resource in Hierarchical Systems, Autom. Remote Control, 1996, vol. 57, no. 2, part 2, pp. 266–271.

    Google Scholar 

  5. Prilutskii, M.Kh. and Vlasov, S.E., Multicriterial Volume Planning Problems. Lexicographic Schemes, Inform. Tekhnol., 2005, no. 7, pp. 61–66.

    Google Scholar 

  6. Tanaev, V.S. and Shkurba, V.V., Vvedenie v teoriyu raspisanii (Introduction to Scheduling Theory), Moscow: Nauka, 1975.

    Google Scholar 

  7. Tanaev, V.S., Gordon, V.S., and Shafranskii, Ya.M., Teoriya raspisanii. Odnostadiinye sistemy (Scheduling Systems. Single-Stage Systems), Moscow: Nauka, 1984.

    Google Scholar 

  8. Tanaev, V.S., Sotskov, Yu.N., and Strusevich, V.A., Teoriya raspisanii. Mnogostadiinye sistemy (Scheduling Systems. Multi-Stage Systems), Moscow: Nauka, 1989.

    Google Scholar 

  9. Arbib, C., Pacciarelli, D., and Smriglio, S.A., A Three-Dimensional Matching Model for Perishable Production Scheduling, Discrete Appl. Math., 1999, vol. 92, pp. 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  10. Briskorn, D., Drexl, A., and Spieksma, F.C.R., Round Robin Tournaments and Three Index Assignment, 4OR: A Quarterly J. Oper. Res., 2010, vol. 8, pp. 365–374.

    Article  MATH  MathSciNet  Google Scholar 

  11. Daskalai, S., Birbas, T., and Housos, E., An Integer Programming Formulation for a Case Study in University Timetabling, Eur. J. Oper. Res., 2004, vol. 153, pp. 117–135.

    Article  Google Scholar 

  12. Franz, L.S. and Miller, J.L., Scheduling Medical Residents to Rotations: Solving the Large-Scale Multiperiod Staff Assignment Problem, Oper. Res., 1993, vol. 41, no. 2, pp. 269–279.

    Article  Google Scholar 

  13. Frieze, A.M. and Yadegar, J., An Algorithm for Solving 3-Dimensional Assignment Problems with Application to Scheduling a Teaching Practice, J. Oper. Res. Soc., 1981, vol. 32, no. 11, pp. 989–995.

    Article  MATH  Google Scholar 

  14. Gunawan, A., Ng, K.M., and Poh, K.L., Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm, Int. J. Comput. Inform. Eng., 2007, vol. 1, no. 2, pp. 136–141.

    Google Scholar 

  15. Lim, A., Rodrigues, B., and Zhang, X., Scheduling Sports Competitions at Multiple Venues is Revisited, Eur. J. Oper. Res., 2006, vol. 175, pp. 171–186.

    Article  MATH  MathSciNet  Google Scholar 

  16. Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979. Translated under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Moscow: Mir, 1982.

    MATH  Google Scholar 

  17. Crama, Y. and Spieksma, F.C.R., Approximation Algorithms for Three-Dimensional Assignment Problems with Triangle Inequalities, Eur. J. Oper. Res., 1992, vol. 60, pp. 273–279.

    Article  MATH  Google Scholar 

  18. Hoffman, A.J. and Kruskal, J.B., Integral Boundary Points of Convex Polyhedra, in Linear Inequalities and Related Systems, Kuhn, H.W. and Tucker, A.W., Eds., Princeton: Princeton Univ. Press, 1956, pp. 223–246.

    Google Scholar 

  19. Lenstra, H.W., Jr., Integer Programming with a Fixed Number of Variables, Math. Oper. Res., 1983, vol. 8, no. 4, pp. 538–548.

    Article  MATH  MathSciNet  Google Scholar 

  20. De Loera, J., Hemmecke, R., Onn, S., et al., N-Fold Integer Programming, Discrete Optim., 2008, vol. 5, pp. 231–241.

    Article  MATH  MathSciNet  Google Scholar 

  21. Spieksma, F.C.R., Multi Index Assignment Problems, Complexity, Approximation, Applications, in Nonlinear Assignment Problems: Algorithms and Applications, Pardalos, P.M. and Pitsoulis, L.S., Eds., Dordrecht: Kluwer, 2000, pp. 1–11.

    Chapter  Google Scholar 

  22. Gimadi, E.Kh. and Serdyukov, A.I., Axial Three-Index Assignment and Travelling Salesman Problems: Fast Approximate Algorithms and Their Probabilistic Analysis, Izv. Vyssh. Uchebn. Zaved., Mat., 1999, no. 12, pp. 19–25.

    Google Scholar 

  23. Balas, E. and Saltzman, M.J., An Algorithm for the Three-Index Assignment Problem, Oper. Res., 1991, vol. 39, pp. 150–161.

    Article  MATH  MathSciNet  Google Scholar 

  24. Burkard, R.E., Rudolf, R., and Woeginger, G.J., Computational Investigation on 3-Dimensional Axial Assignment Problems, Belgian J. Oper. Res., Stat. Comput. Sci., 1992, vol. 32, pp. 85–98.

    MATH  Google Scholar 

  25. Gimadi, E.Kh. and Glazkov, Yu.V., On an Asymptotically Exact Algorithm for Solving One Modification of the Three-Index Planar Assignment Problem, Diskret. Anal. Issled. Oper., 2006, vol. 13, no. 1, pp. 10–26.

    MATH  Google Scholar 

  26. Dichkovskaya, S.A. and Kravtsov, M.K., A Study of Polynomial Algorithms for Solving the Three-Index Planar Problem of Choice, Zh. Vychisl. Mat. Mat. Fiz., 2006, vol. 46, no. 2, pp. 222–228.

    MATH  MathSciNet  Google Scholar 

  27. Sergeev, S.I., New Lower Bounds for the Triplanar Assignment Problem. Use of the Classical Model, Autom. Remote Control, 2008, vol. 69, no. 12, pp. 2039–2060.

    Article  MATH  MathSciNet  Google Scholar 

  28. Magos, D., Tabu Search for the Planar Three-Index Assignment Problem, J. Global Optim., 1996, vol. 8, pp. 35–48.

    Article  MATH  MathSciNet  Google Scholar 

  29. Sigal, I.Kh. and Ivanova, A.P., Vvedenie v prikladnoe diskretnoe programmirovanie. Modeli i vychislitel’nye algoritmy (Introduction to Applied Discrete Programming. Models and Computational Algorithms), Moscow: Fizmalit, 2007.

    Google Scholar 

  30. Schrijver, A., Theory of Linear and Integer Programming, New York: Wiley, 1986. Translated under the title Teoriya lineinogo i tselochislennogo programmirovaniya, Moscow: Mir, 1991.

    MATH  Google Scholar 

  31. Afraimovich, L.G., Multi-Index Transport Problems with Decomposition Structure, Autom. Remote Control, 2012, vol. 73, no. 1, pp. 118–133.

    Article  MathSciNet  Google Scholar 

  32. Raskin, L.G. and Kirichenko, I.O., Mnogoindeksnye zadachi lineinogo programmirovaniya (Multiindex Linear Programming Problems), Moscow: Radio i Svyaz’, 1982.

    Google Scholar 

  33. Orlin, J.B., A Faster Strongly Polynomial Minimum Cost Flow Algorithm, Oper. Res., 1993, vol. 41, no. 2, pp. 338–350.

    Article  MATH  MathSciNet  Google Scholar 

  34. Sleator, D.D. and Tarjan, R.E., A Data Structure for Dynamic Trees, J. Comput. Syst. Sci., 1983, vol. 26, pp. 362–391.

    Article  MATH  MathSciNet  Google Scholar 

  35. Afraimovich, L.G., Cyclic Reducibility of Multiindex Systems of Linear Inequalities of Transportation Type, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 4, pp. 83–90.

    Google Scholar 

  36. Kanatnikov, A.N. and Krishchenko, A.P., Lineinaya algebra (Linear Algebra), Moscow: Mosk. Gos. Tekh. Univ., 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Afraimovich.

Additional information

Original Russian Text © L.G. Afraimovich, 2014, published in Avtomatika i Telemekhanika, 2014, No. 8, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afraimovich, L.G. A heuristic method for solving integer-valued decompositional multiindex problems. Autom Remote Control 75, 1357–1368 (2014). https://doi.org/10.1134/S0005117914080013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117914080013

Keywords

Navigation