Abstract
We consider NP-hard integer-valued multiindex problems of transportation type. We distinguish a subclass of polynomially solvable multiindex problems, namely multiindex problems with decomposition structure. We construct a general scheme for a heuristic method to solve a number of similar NP-hard decompositional multiindex problems. For one version of implementation for this scheme, we estimate its deviation from the optimum. We illustrate our results with the example of designing a class schedule.
Similar content being viewed by others
References
Afraimovich, L.G. and Prilutskii, M.Kh., Multiindex Optimal Production Planning Problems, Autom. Remote Control, 2010, vol. 71, no. 10, pp. 2145–2151.
Afraimovich, L.G. and Prilutskii, M.Kh., Multiindex Resource Distributions for Hierarchical Systems, Autom. Remote Control, 2006, vol. 67, no. 6, pp. 1007–1016.
Prilutskii, M.Kh., Multicriterial Multiindex Problems of Volume-Calendar Planning, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2007, no. 1, pp. 78–82.
Prilutskii, M.Kh., Multicriterial Distribution of a Homogeneous Resource in Hierarchical Systems, Autom. Remote Control, 1996, vol. 57, no. 2, part 2, pp. 266–271.
Prilutskii, M.Kh. and Vlasov, S.E., Multicriterial Volume Planning Problems. Lexicographic Schemes, Inform. Tekhnol., 2005, no. 7, pp. 61–66.
Tanaev, V.S. and Shkurba, V.V., Vvedenie v teoriyu raspisanii (Introduction to Scheduling Theory), Moscow: Nauka, 1975.
Tanaev, V.S., Gordon, V.S., and Shafranskii, Ya.M., Teoriya raspisanii. Odnostadiinye sistemy (Scheduling Systems. Single-Stage Systems), Moscow: Nauka, 1984.
Tanaev, V.S., Sotskov, Yu.N., and Strusevich, V.A., Teoriya raspisanii. Mnogostadiinye sistemy (Scheduling Systems. Multi-Stage Systems), Moscow: Nauka, 1989.
Arbib, C., Pacciarelli, D., and Smriglio, S.A., A Three-Dimensional Matching Model for Perishable Production Scheduling, Discrete Appl. Math., 1999, vol. 92, pp. 1–15.
Briskorn, D., Drexl, A., and Spieksma, F.C.R., Round Robin Tournaments and Three Index Assignment, 4OR: A Quarterly J. Oper. Res., 2010, vol. 8, pp. 365–374.
Daskalai, S., Birbas, T., and Housos, E., An Integer Programming Formulation for a Case Study in University Timetabling, Eur. J. Oper. Res., 2004, vol. 153, pp. 117–135.
Franz, L.S. and Miller, J.L., Scheduling Medical Residents to Rotations: Solving the Large-Scale Multiperiod Staff Assignment Problem, Oper. Res., 1993, vol. 41, no. 2, pp. 269–279.
Frieze, A.M. and Yadegar, J., An Algorithm for Solving 3-Dimensional Assignment Problems with Application to Scheduling a Teaching Practice, J. Oper. Res. Soc., 1981, vol. 32, no. 11, pp. 989–995.
Gunawan, A., Ng, K.M., and Poh, K.L., Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm, Int. J. Comput. Inform. Eng., 2007, vol. 1, no. 2, pp. 136–141.
Lim, A., Rodrigues, B., and Zhang, X., Scheduling Sports Competitions at Multiple Venues is Revisited, Eur. J. Oper. Res., 2006, vol. 175, pp. 171–186.
Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979. Translated under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Moscow: Mir, 1982.
Crama, Y. and Spieksma, F.C.R., Approximation Algorithms for Three-Dimensional Assignment Problems with Triangle Inequalities, Eur. J. Oper. Res., 1992, vol. 60, pp. 273–279.
Hoffman, A.J. and Kruskal, J.B., Integral Boundary Points of Convex Polyhedra, in Linear Inequalities and Related Systems, Kuhn, H.W. and Tucker, A.W., Eds., Princeton: Princeton Univ. Press, 1956, pp. 223–246.
Lenstra, H.W., Jr., Integer Programming with a Fixed Number of Variables, Math. Oper. Res., 1983, vol. 8, no. 4, pp. 538–548.
De Loera, J., Hemmecke, R., Onn, S., et al., N-Fold Integer Programming, Discrete Optim., 2008, vol. 5, pp. 231–241.
Spieksma, F.C.R., Multi Index Assignment Problems, Complexity, Approximation, Applications, in Nonlinear Assignment Problems: Algorithms and Applications, Pardalos, P.M. and Pitsoulis, L.S., Eds., Dordrecht: Kluwer, 2000, pp. 1–11.
Gimadi, E.Kh. and Serdyukov, A.I., Axial Three-Index Assignment and Travelling Salesman Problems: Fast Approximate Algorithms and Their Probabilistic Analysis, Izv. Vyssh. Uchebn. Zaved., Mat., 1999, no. 12, pp. 19–25.
Balas, E. and Saltzman, M.J., An Algorithm for the Three-Index Assignment Problem, Oper. Res., 1991, vol. 39, pp. 150–161.
Burkard, R.E., Rudolf, R., and Woeginger, G.J., Computational Investigation on 3-Dimensional Axial Assignment Problems, Belgian J. Oper. Res., Stat. Comput. Sci., 1992, vol. 32, pp. 85–98.
Gimadi, E.Kh. and Glazkov, Yu.V., On an Asymptotically Exact Algorithm for Solving One Modification of the Three-Index Planar Assignment Problem, Diskret. Anal. Issled. Oper., 2006, vol. 13, no. 1, pp. 10–26.
Dichkovskaya, S.A. and Kravtsov, M.K., A Study of Polynomial Algorithms for Solving the Three-Index Planar Problem of Choice, Zh. Vychisl. Mat. Mat. Fiz., 2006, vol. 46, no. 2, pp. 222–228.
Sergeev, S.I., New Lower Bounds for the Triplanar Assignment Problem. Use of the Classical Model, Autom. Remote Control, 2008, vol. 69, no. 12, pp. 2039–2060.
Magos, D., Tabu Search for the Planar Three-Index Assignment Problem, J. Global Optim., 1996, vol. 8, pp. 35–48.
Sigal, I.Kh. and Ivanova, A.P., Vvedenie v prikladnoe diskretnoe programmirovanie. Modeli i vychislitel’nye algoritmy (Introduction to Applied Discrete Programming. Models and Computational Algorithms), Moscow: Fizmalit, 2007.
Schrijver, A., Theory of Linear and Integer Programming, New York: Wiley, 1986. Translated under the title Teoriya lineinogo i tselochislennogo programmirovaniya, Moscow: Mir, 1991.
Afraimovich, L.G., Multi-Index Transport Problems with Decomposition Structure, Autom. Remote Control, 2012, vol. 73, no. 1, pp. 118–133.
Raskin, L.G. and Kirichenko, I.O., Mnogoindeksnye zadachi lineinogo programmirovaniya (Multiindex Linear Programming Problems), Moscow: Radio i Svyaz’, 1982.
Orlin, J.B., A Faster Strongly Polynomial Minimum Cost Flow Algorithm, Oper. Res., 1993, vol. 41, no. 2, pp. 338–350.
Sleator, D.D. and Tarjan, R.E., A Data Structure for Dynamic Trees, J. Comput. Syst. Sci., 1983, vol. 26, pp. 362–391.
Afraimovich, L.G., Cyclic Reducibility of Multiindex Systems of Linear Inequalities of Transportation Type, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 4, pp. 83–90.
Kanatnikov, A.N. and Krishchenko, A.P., Lineinaya algebra (Linear Algebra), Moscow: Mosk. Gos. Tekh. Univ., 2002.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © L.G. Afraimovich, 2014, published in Avtomatika i Telemekhanika, 2014, No. 8, pp. 3–18.
Rights and permissions
About this article
Cite this article
Afraimovich, L.G. A heuristic method for solving integer-valued decompositional multiindex problems. Autom Remote Control 75, 1357–1368 (2014). https://doi.org/10.1134/S0005117914080013
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117914080013