Skip to main content
Log in

Limit graphs in structural optimization of modes in distribution networks

  • Safety, Viability, Reliability, Technical Diagnostics
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We study applications of the method of limit graphs that has been previously developed for accident prevention control of heat supply networks to structural optimization problems for modes of electrical distribution networks. We present a comparative analysis of optimization results for a practical 52-bus distribution network according to stability criteria, uniformness of the voltage profile, and power losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh, L., Chowdhury, S.P., Natarajan, A.A., et al., Minimization of Power Loss in Distribution Networks by Different Techniques, Int. J. Elect. Power Energy Syst. Eng., 2009, vol. 2, no. 1, pp. 743–766.

    Google Scholar 

  2. Grebenyuk, G.G. and Krygin, A.A., Algorithms for Optimization of the Number of Switchings in Heat Supply Networks Reconfiguration, Autom. Remote Control, 2007, vol. 68, no. 12, pp. 2187–2197.

    Article  MATH  MathSciNet  Google Scholar 

  3. Rama Rao, P.V.V. and Sivanagaraju, S., Radial Distribution Network Reconfiguration for Loss Reduction and Load Balancing using Plant Growth Simulation Algorithm, Int. J. Elect. Eng. Inform., 2010, vol. 2, no. 4, pp. 266–277.

    Article  Google Scholar 

  4. Kayal, P. and Chanda, C.K., A Simple and Fast Approach for Allocation and Size Evaluation of Distributed Generation, Int. J. Energy Environ. Eng., 2013, vol. 4, no. 7, pp. 2–10.

    Google Scholar 

  5. Aravindhababu, P. and Mohan, G., Optimal Capacitor Placement for Voltage Stability Enhancement in Distribution Systems, ARPN J. Eng. Appl. Sci., 2009, vol. 4, no. 2, pp. 88–92.

    Google Scholar 

  6. Yadykin, I.B. and Galyaev, A.A., On the Methods for Calculation of Grammians and Their Use in Analysis of Linear Dynamic Systems, Autom. Remote Control, 2013, vol. 74, no. 2, pp. 207–224.

    Article  MATH  MathSciNet  Google Scholar 

  7. Christine, E. and Doig, C., Analysis on Voltage Stability Indices, Inst. Automat. Complex Power Syst., E.ON Energy Res. Center, 2012.

    Google Scholar 

  8. Charkravorty, M. and Das, D., Stability Analysis of Radial Distribution Networks, Int. J. Elect. Power Energy Syst., 2001, vol. 23, no. 2, pp. 129–135.

    Article  Google Scholar 

  9. Ratniyomchai, T. and Kulworawanichpong, T., Monte Carlo Simulation for Voltage Stability Index Evaluation, WSEAS Trans. Power Syst., 2008, vol. 3, no. 12, pp. 735–744.

    Google Scholar 

  10. Venkata Ramana, B., Murthy, K.V.S.R., Upendra Kumar, P., and Raja Kumar, V., A Two Bus Equivalent Method for Determination of Steady State Voltage Stability Limit of a Power System, Int. J. Comput. Eng. Res., 2012, vol. 2, no. 2, pp. 428–434.

    Google Scholar 

  11. Voropai, N.I. and Bui Din’ Tkhan’, Restoring Power Supply Systems with Distributive Generation after a Large-Scale Failure, Prom. Energetika, 2011, no. 8, pp. 12–18.

    Google Scholar 

  12. Baran, M.E. and Wu, F.F., Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing, IEEE Trans. Power Del., 1989, vol. 4(2), pp. 1401–1407.

    Article  Google Scholar 

  13. Civanlar, S., Grainger, J.J., Yin, H., and Lee, S.S.H., Distribution Feeder Reconfiguration for Loss Reduction, IEEE Trans. Power Del., 1988, vol. 3, no. 3, pp. 1217–1223.

    Article  Google Scholar 

  14. Merlin, A. and Back, H., Search for a Minimal-Loss Operating Spanning Tree Configuration in an Urban Power Distribution System, Proc. 5 Power Syst. Comput. Conf. (PSCC), Cambridge, United Kingdom, 1975, paper 1.2/6.

    Google Scholar 

  15. Shirmohammadi, D. and Hong, H.W., Reconfiguration of Electric Distribution Networks for Resistive Line Loss Reduction, IEEE Trans. Power Del., 1989, vol. 4, no. 1, pp. 1492–1498.

    Article  Google Scholar 

  16. Hong, Y.Y. and Ho, S.Y., Determination of Network Configuration Considering Multiobjective in Distribution Systems Using Genetic Algorithms, IEEE Trans. Power Syst., 2005, vol. 20, no. 2, pp. 1062–1069.

    Article  Google Scholar 

  17. Prasad, K., Ranjan, R., Sahoo, N.C., and Chaturvedi, A., Optimal Reconfiguration of Radial Distribution Systems Using a Fuzzy Mutated Genetic Algorithm, IEEE Trans. Power Del., 2005, vol. 20, no. 2, pp. 1211–1213.

    Article  Google Scholar 

  18. Zhu, J.Z., Optimal Reconfiguration of Electrical Distribution Network Using the Refined Genetic Algorithm, Elect. Power Syst. Res., 2002, vol. 62, no. 1, pp. 37–42.

    Article  Google Scholar 

  19. Kim, H., Ko, Y., and Jung, K.H., Artificial Neural-Network Based Feeder Reconfiguration for Loss Reduction in Distribution Systems, IEEE Trans. Power Del., 1993, vol. 8. no. 3, pp. 1356–1366.

    Article  Google Scholar 

  20. Salazar, H., Gallego, R., and Romero, R., Artificial Neural Networks and Clustering Techniques Applied in the Reconfiguration of Distribution Systems, IEEE Trans. Power Del., 2006, vol. 21, no. 3, pp. 1735–1742.

    Article  Google Scholar 

  21. Song, Y.H., Wang, G.S., Johns, A.T., and Wang, P.Y., Distribution Network Reconfiguration for Loss Reduction Using Fuzzy Controlled Evolutionary Programming, Proc. Inst. Elect. Eng. Gen. Trans. Distrib., 1997, vol. 144, no. 4, pp. 345–350.

    Article  Google Scholar 

  22. Delbem, A.C.B., Carvalho, P.L.F., and Bretas, N.G., Main Chain Representation for Evolutionary Algorithms Applied to Distribution System Reconfiguration, IEEE Trans. Power Syst., 2005, vol. 20, no. 1, pp. 425–436.

    Article  Google Scholar 

  23. Li, T., Su, W.L., and Wang, C.F., A Global Optimization Bionics Algorithm for Solving Integer Programming-Plant Growth Simulation Algorithm, Proc. Int. Conf. Manage. Sci. Eng., Harbin, China, Aug. 13–15, 2004, vol. 1, pp. 531–535.

  24. Partha Kayal, Sayonsom Chanda, and Chanda, C.K., Determination of Voltage Stability in Distribution Network Using ANN Technique, Int. J. Electric. Eng. Inform., 2012, vol. 4, no. 2, pp. 347–360.

    Google Scholar 

  25. Thukaram, D., Khincha, H.P., and Vijaynarasimha, H.P., Artifcial Neural Network and Support Vector Machine Approach for Locating Faults in Radial Distribution Systems, IEEE Trans. Power Del., 2005, vol. 20, no. 2, pp. 710–721.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Grebenyuk.

Additional information

Original Russian Text © G.G. Grebenyuk, A.A. Krygin, 2015, published in Avtomatika i Telemekhanika, 2015, No. 1, pp. 147–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebenyuk, G.G., Krygin, A.A. Limit graphs in structural optimization of modes in distribution networks. Autom Remote Control 76, 120–132 (2015). https://doi.org/10.1134/S0005117915010117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915010117

Keywords

Navigation