Skip to main content
Log in

Stabilization of solutions for nonlinear differential-algebraic equations

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a nonlinear controllable system of first order ordinary differential equations that is unsolved with respect to the derivative of the unknown vector function and identically degenerate in the domain. We obtain stabilizability conditions by linear approximation of systems with scalar input. We admit an arbitrarily high unsolvability index. Our analysis is done under assumptions that ensure the existence of a global structural form that separates “algebraic” and “differential” subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenan, K.E., Campbell, S.L., and Petzold, L.R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Philadelphia: SIAM, 1996.

    MATH  Google Scholar 

  2. Campbell, S.L. and Gear, C.W., The Index of General Nonlinear DAEs, Numer. Math., 1995, no. 72, pp. 173–196.

    Google Scholar 

  3. Ascher, U.M. and Petzold, L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia: SIAM, 1998.

    Book  MATH  Google Scholar 

  4. Campbell, S.L. and Griepentrog, E., Solvability of General Differential Algebraic Equations, SIAM J. Sci. Stat. Comp., 1995, no. 16, pp. 257–270.

    Google Scholar 

  5. Shcheglova, A.A., Controllability of Nonlinear Algebraic Differential Systems, Autom. Remote Control, 2008, vol. 69, no. 10. pp. 1700–1722.

    Article  MATH  MathSciNet  Google Scholar 

  6. Shcheglova, A.A., Existence of a Solution in the Initial Problem for a Degenerate Linear Hybrid System with Variable Coefficients, Izv. Vyssh. Uchebn. Zaved., Mat., 2010, no. 9, pp. 57–70.

    Google Scholar 

  7. Dai, L., Singular Control Systems, Lecture Notes in Control and Information Sciences, vol. 118, Berlin: Springer-Verlag, 1989.

    Book  MATH  Google Scholar 

  8. Varga, A., On Stabilization Methods of Descriptor Systems, Syst. Control Lett., 1995, vol. 24, pp. 133–138.

    Article  MATH  Google Scholar 

  9. Lin, C., Wang, J.L., Yang, G.-H., et al., Robust Stabilization via State Feedback for Descriptor Systems with Uncertainties in the Derivative Matrix, Int. J. Control, 2000, vol. 73, no. 5, pp. 407–415.

    Article  MATH  MathSciNet  Google Scholar 

  10. Duan, G.R., Irwin, G.W., and Liu, G.P., Robust Stabilization of Descriptor Linear Systems via Proportional-plus-Derivative State Feedback, Proc. Am. Control Conf., San Diego, California, June 1994, pp. 2981–2982.

    Google Scholar 

  11. Wen, X.C. and Liu, Y.Q., Study on Robust Stabilization for a Class of Continuous-Time Uncertain Singular Systems, Lect. Notes in Pure and Applied Mathematics, 1996, vol. 176, pp. 377–381.

    MathSciNet  Google Scholar 

  12. Zhang, Q.L. and Xu, X.H., Robust Stabilization of Descriptor Systems, in Proc. 33th Conf. on Decision and Control, Lake Buena Vista, Florida, December 1994, pp. 2981–2982.

    Google Scholar 

  13. Shields, D.N., Feedback Stabilization of a Class of Singular Nonlinear Systems, IMA J. Mat. Control Inf., 1993, vol. 10, pp. 305–322.

    Article  MATH  MathSciNet  Google Scholar 

  14. Ikeda, M. and Uezato, E., Stability and Stabilizability Conditions for Linear Time-Varying Descriptor Systems, Seigyo Riron Shinpojiumu, 2006, vol. 35, pp. 87–90.

    Google Scholar 

  15. Takaba, K., Robust H 2 Control Descriptor System with Time Varying Uncertainty, Int. J. Control, 1998, vol. 71, no. 4, pp. 559–579.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ji, X.-F., Yang, Z.-B., Sun, Y.-K., et al., Robust Stabilization for Linear Time-Varying Uncertain Periodic Descriptor Systems, Acta Automat. Sinica, 2008, vol. 34, no. 9, pp. 1219–1220.

    Article  MathSciNet  Google Scholar 

  17. Liu, X. and Ho, D.W.C., Stabilization of Non-linear Differential-Algebraic Equation Systems, Int. J. Control, 2004, vol. 77, pp. 671–684.

    Article  MATH  MathSciNet  Google Scholar 

  18. McClamroch, N.H., Feedback Stabilization of Control Systems Described by a Class of Nonlinear Differential-Algebraic Equations, Syst. Control Lett., 1990, vol. 15, pp. 53–60.

    Article  MATH  MathSciNet  Google Scholar 

  19. Wu, H. and Mizukami, K., Stability and Robust Stabilization of Nonlinear Descriptor Systems with Uncertainties, in Proc. 33th Conf. on Decision and Control, Lake Buena Vista, Florida, December 1994, pp. 2772–2777.

  20. Yang, C., Zhang, Q., and Zhou, L., Practical Stabilization and Controllability of Descriptor Systems, Int. J. Inf. Syst. Sci., 2005, vol. 15, nos. 3–4, pp. 455–465.

    MathSciNet  Google Scholar 

  21. Yongqing, L. and Yuanqing, L., Stabilization of Nonlinear Singular Systems, Proc. Am. Control Conf., Philadelphia, Pennsilvania, June 1998, pp. 2532–2533.

  22. Wu, J., Lu, G., Wo, S., et al., Exponential Stability and Stabilization for Nonlinear Descriptor Systems with Discrete and Distributed Delays, Int. J. Robust Nonlin. Control, 2012, vol. 23, no. 12, pp. 1393–1404.

    Article  MathSciNet  Google Scholar 

  23. Chistyakov, V.F., Algebro-differentsial’nye operatory s konechnomernym yadrom (Algebro-Differential Operators with a Finite-Dimensional Kernel), Novosibirsk: Nauka, 1996.

    MATH  Google Scholar 

  24. Kunkel, P. and Mehrmann, V., Regular Solutions of Nonlinear Differential-algebraic Equations and Their Numerical Determination, Numer. Math., 1998, no. 79, pp. 581–600.

    Google Scholar 

  25. Chistyakov, V.F. and Shcheglova, A.A., Izbrannye glavy teorii algebro-differentsial’nykh sistem (Selected Chapters of the Theory of Algebro-Differential Systems), Novosibirsk: Nauka, 2003.

    MATH  Google Scholar 

  26. Shilov, G.E., Matematicheskii analiz funktsii neskol’kikh veshchestvennykh peremennykh (Analysis of Functions of Several Real Variables), Moscow: Nauka, 1972, parts 1–2.

    Google Scholar 

  27. Cristea, M., A Note on Global Implicit Function Theorem, J. Inequal. Pure Appl. Math., 2007, vol. 8, no. 4, article 100.

    Google Scholar 

  28. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1988.

    MATH  Google Scholar 

  29. Gaishun, I.V., Vvedenie v teoriyu lineinykh nestatsionarnykh sistem (Introduction to the Theory of Linear Nonstationary Systems). Minsk: Inst. Mat. NAN Belarusi, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Petrenko.

Additional information

Original Russian Text © P.S. Petrenko, A.A. Shcheglova, 2015, published in Avtomatika i Telemekhanika, 2015, No. 4, pp. 32–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrenko, P.S., Shcheglova, A.A. Stabilization of solutions for nonlinear differential-algebraic equations. Autom Remote Control 76, 573–588 (2015). https://doi.org/10.1134/S0005117915040037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915040037

Keywords

Navigation