Skip to main content
Log in

Cramér–Rao lower bound in nonlinear filtering problems under noises and measurement errors dependent on estimated parameters

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper derives recurrent expressions for the maximum attainable estimation accuracy calculated using the Cramér–Rao inequality (Cramér–Rao lower bound) in the discretetime nonlinear filtering problem under conditions when generating noises in the state vector and measurement error equations depend on estimated parameters and the state vector incorporates a constant subvector. We establish a connection to similar expressions in the case of no such dependence. An example illustrates application of the obtained algorithms to lowerbound accuracy calculation in a parameter estimation problem often arising in navigation data processing within a model described by the sum of a Wiener sequence and discrete-time white noise of an unknown variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yarlykov, M.S., Statisticheskaya teoriya radionavigatsii (Statistical Theory of Radio Navigation), Moscow: Radio i Svyaz’, 1985.

    Google Scholar 

  2. Yarlykov, M.S. and Mironov, M.A., Markovskaya teoriya otsenivaniya sluchainykh protsessov (Markov Theory of Random Processes Estimation), Moscow: Radio i Svyaz’, 1993.

    Google Scholar 

  3. Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory in Navigational Data Processing Problems), St. Petersburg: GNTs RF—TsNII “Elektropribor”, 1998.

    Google Scholar 

  4. Dmitriev, S.P. and Stepanov, O.A., Nonlinear Filtering and Navigation, Proc. 5th St. Petersburg Int. Conf. on Integrated Navigation Syst., St. Petersburg, 1998, pp. 138–149.

    Google Scholar 

  5. Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications, in Linkoping Studies in Science and Technology. Dissertations-no. 579, Department of Electrical Engineering, Linkoping University, SE-581-83, Linkoping, Sweden, 1999.

    Google Scholar 

  6. Ivanov, V.M., Stepanov, O.A., and Korenevski, M.L., Monte Carlo Methods for a Special Nonlinear Filtering Problem, Proc. 11th IFAC Int. Workshop Control Applications of Optimization, 2000, vol. 1, pp. 347–353.

    Google Scholar 

  7. Doucet, A., de Freitas, N., and Gordon, N., Sequential Monte Carlo Methods in Practice, New York: Springer-Verlag, 2001.

    Book  MATH  Google Scholar 

  8. Rozov, A.K., Nelineinaya fil’tratsiya signalov (Nonlinear Filtering of Signals), St. Petersburg: Politekhnika, 2002, 2nd ed.

    Google Scholar 

  9. Gustafsson, F., Bergman, N., Forssel, U., et al., Particle Filters for Positioning, Navigation and Tracking, IEEE Trans. Signal Process., 2002, vol. 50, no. 2, pp. 425–437.

    Article  Google Scholar 

  10. Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter. Particle Filters for Tracking Applications, London: Artech House, 2004.

    MATH  Google Scholar 

  11. Dmitriev, S.P. and Stepanov, O.A., Multiple-alternative Filtering in Navigational Data Processing Problems, Radiotekhn., 2004, no. 7, pp. 11–17.

    Google Scholar 

  12. Daum, F., Nonlinear Filters: Beyond the Kalman Filter, IEEE Aerospace Electron. Syst., 2005, vol. 8, pp. 57–71.

    Article  Google Scholar 

  13. Bar-Shalom, Y. and Li, X.R., Estimation and Tracking: Principles, Techniques, and Software, Norwood: Artech House, 1993. Translated under the title Traektornaya obrabotka. Printsipy, sposoby i algoritmy, tom 1–2, Moscow: Gos. Tekhn. Univ. im. Baumana, 2011.

    Google Scholar 

  14. Bar-Shalom, Y., Willett, P.K., and Tian, X., Tracking and Data Fusion: A Handbook of Algorithms, Storrs: YBS, 2011.

    Google Scholar 

  15. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Chast’ 1. Vvedenie v teoriyu otsenivaniya (Foundations of Estimation Theory with Application to Navigation Data Processing Problems. Part 1. An Introduction to Estimation Theory), St. Petersburg: GNTs RF—TsNII “Elektropribor,” ITMO, 2010, 2012.

    Google Scholar 

  16. Toropov, A.B. and Stepanov, O.A., Usage of Sequential Monte Carlo Methods in the Correlation- Extremal Navigation Problem, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2010, vol. 53, no. 10, pp. 49–54.

    Google Scholar 

  17. Parakhnevich, A.V., Solonar, A.S., and Gorshkov, S.A., Approaches to Significant Probability Density Choice in Particle Filters, Dokl. Beloruss. Gos. Univ. Informatik. Radioelektr., 2012, no. 4 (66), pp. 68–74.

    Google Scholar 

  18. Kosachev, I.M., A Methodology of High-Accuracy Nonlinear Filtering of Random Processes in Stochastic Dynamic Fixed-Structure Systems, Vestn. Voenn. Akad. Resp. Belarus’, 2014, no. 4 (66), pp. 125–160.

    Google Scholar 

  19. Snyder, C., Bengtsson, T., Bickel, P., et al., Obstacles to High-Dimensional Particle Filtering, Monthly Weather Rev., 2008, vol. 136, no. 12, pp. 4629–4640.

    Article  Google Scholar 

  20. Berkovskii, N.A. and Stepanov, O.A., Error of Calculating the Optimal Bayesian Estimate Using the Monte Carlo Method in Nonlinear Problems, J. Comp. Syst. Sci. Int., 2013, vol. 52, no. 3, pp. 342–353.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cramér, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1946. Translated under the title Matematicheskie metody statistiki, Kolmogorov, A.N., Ed., Moscow: Inostrannaya Literatura, 1948.

  22. Van Trees, H.L., Detection, Estimation, and Modulation Theory, Part 1, New York: Wiley, 1968. Translated under the title Teoriya obnaruzheniya, otsenok i modulyatsii. Tom 1. Teoriya obnaruzheniya, otsenok i lineinoi modulyatsii, Moscow: Sovetskoe Radio, 1972.

    Google Scholar 

  23. Galdos, J.I., A Cramer–Rao Bound for Multidimensional Discrete–Time Dynamical Systems, IEEE Trans. Automat. Control, 1980, vol. AC-25, no. 1, pp. 117–119.

    Article  MathSciNet  Google Scholar 

  24. Koshaev, D.A. and Stepanov, O.A., Application of the Rao–Cramer Inequality in Problems of Nonlinear Estimation, J. Comp. Syst. Sci. Int., 1997, vol. 36, no. 2, pp. 220–227.

    MATH  Google Scholar 

  25. Tichavsky, P., Muravchik, C., and Nehorai, A., Posterior Cramer–Rao Bounds for Discrete–Time Nonlinear Filtering, IEEE Trans. Signal Process., 1998, no. 46, pp. 1386–1398.

    Article  Google Scholar 

  26. Simandl, M., Kralovec, J., and Tichavsky, P., Filtering, Predictive and Smoothing Cramer–Rao Bounds for Discrete–Time Nonlinear Dynamic Systems, Automatica, 2001, no. 37, pp. 1703–1716.

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Trees, H.L. and Bell, K.L., Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, San-Francisco: Wiley–IEEE Press, 2007.

    Book  MATH  Google Scholar 

  28. Stepanov, O.A., Proceeding Cramer–Rao Bounds for Special Nonlinear Filtering Problems, Proc. Eur. Control Conf. ECC’99, Karlsruhe, Germany, 1999.

    Google Scholar 

  29. Bergman, N., Poster Cramer–Rao Bounds for Sequential Estimation. See 1999 [7, pp. 321–338].

    Google Scholar 

  30. Batista, P., Silvestre, C., and Oliveira, P., Preliminary Results on the Estimation Performance of Single Range Source Localization, Proc. 21st Mediterranean Conf. on Control & Automation, Platanias-Chania, Crete, Greece, 2013, pp. 421–424.

    Google Scholar 

  31. Koshaev, D.A., A Comparison of Lower Bounds of Accuracy in Problems of Nonlinear Estimation, J. Comp. Syst. Sci. Int., 1998, vol. 37, no. 2, pp. 222–224.

    MathSciNet  MATH  Google Scholar 

  32. Dmitriev, S.P. and Sokolov, A.I., Frequency Shift Estimation in a Doppler Log via Identification of the Received Signal Model, Giroskop. Navigats., 2006, no. 1, pp. 21–29.

    Google Scholar 

  33. Stepanov, O.A. and Motorin, A.V., A Comparison of Identification Methods for the Error Models of Sensors Based on Allan Variations and Nonlinear Filtering Algorithms, Mater. 21 Sankt-Peterburg. konf. “Integrirovannye navigatsionnye sistemy” (Proc. 21st St. Petersburg Conf. “Integrated Navigation Systems”), 2014.

    Google Scholar 

  34. Stepanov, O.A., Vasilyev, V.A., and Dolnakova, A.S., Cramer–Rao Lower Bound for Parameters of Random Processes in Navigation Data Processing, Proc. 21st Mediterranean Conf. on Control & Automation, Platanias-Chania, Crete, Greece, 2013, pp. 1214–1221.

    Chapter  Google Scholar 

  35. Stepanov, O.A., Dolnakova, A.S., and Sokolov, A.I., Analysis of Potential Estimation Accuracy of Random Process Parameters in Navigation Data Processing Problems, Tr. XXII Vseross. soveshchan. po problemam upravleniya (Proc. XXII All-Russia Meeting on Control Problems), Moscow: Inst. Probl. Upravlen., 2014, pp. 3730–3740.

    Google Scholar 

  36. Stepanov, O.A., Priblizhennye metody analiza potentsial’noi tochnosti v nelineinykh navigatsionnykh zadachakh (Approximate Analysis Methods for Potential Accuracy in Nonlinear Navigation Problems), Leningrad: Tsentr. Nauchno-Issled. Inst. Rumb, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Stepanov.

Additional information

Original Russian Text © O.A. Stepanov, V.A. Vasil’ev, 2016, published in Avtomatika i Telemekhanika, 2016, No. 1, pp. 104–133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, O.A., Vasil’ev, V.A. Cramér–Rao lower bound in nonlinear filtering problems under noises and measurement errors dependent on estimated parameters. Autom Remote Control 77, 81–105 (2016). https://doi.org/10.1134/S0005117916010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916010057

Keywords

Navigation