Skip to main content
Log in

Control of linear systems subjected to exogenous disturbances: Combined feedback

  • Linear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A new approach is proposed to the rejection of bounded exogenous disturbances in linear control systems via use of the so-called combined feedback of the form u = Kx + K 1 w. Along with the static linear state feedback, this control law contains a linear feedback from the vector of disturbances (or some of its components) whose instantaneous values are assumed to be available. The control design procedure is based on the linear matrix inequality technique; it is characterized by simplicity and ease of implementation and reduces to solving convex optimization problems. The combined feedback design is also performed in the sparse formulation, which can be thought of as a desire to reduce the control resource required to handle the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abedor, J., Nagpal, K., and Poolla, K., A Linear Matrix Inequality Approach to Peak-to-Peak Gain Minimization, Int. J. Robust Nonlin. Control, 1996, no. 6, pp. 899–927.

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchini, F. and Miani, S., Set-Theoretic Methods in Control, Boston: Birkhäuser, 2008.

    MATH  Google Scholar 

  3. Boyd, S., El Ghaoui, L., Feron, E., et. al., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

  4. Dahleh, M.A. and Diaz-Bobillo, I.J., Control of Uncertain Systems: A Linear Programming Approach, New Jersey: Prentice Hall, 1995.

    MATH  Google Scholar 

  5. Hao, F. and Wang, L., An LMI Approach to Persistent Bounded Disturbance Rejection in Nonlinear Impulsive Systems, Nonlin. Anal.: Hybrid Syst., 2007, vol. 1, no. 3, pp. 297–305.

    MathSciNet  MATH  Google Scholar 

  6. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.

    Google Scholar 

  7. Vidyasagar, M., Optimal Rejection of Persistent Bounded Disturbances, IEEE Trans. Autom. Control, 1986, vol. 31, no. 6, pp. 527–534.

    Article  MathSciNet  MATH  Google Scholar 

  8. Nazin, S.A., Polyak, B.T., and Topunov, M.V., Rejection of Bounded Exogenous Disturbances by the Method of Invariant Ellipsoids, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 467–486.

    Article  MathSciNet  MATH  Google Scholar 

  9. Khlebnikov, M.V., Polyak, B.T., and Kuntsevich, V.M., Optimization of Linear Systems Subject to Bounded Exogenous Disturbances: The Invariant Ellipsoid Technique, Autom. Remote Control, 2011, vol. 72, no. 11, pp. 2227–2275.

    Article  MathSciNet  MATH  Google Scholar 

  10. Toroptsev, N.D., Asinkhronnye generatory dlya avtonomnykh elektroenergeticheskikh ustanovok (Asynchronous Generators for Autonomous Electric Power Plants), Moscow: NTF “Energoprogress,” 2004.

    Google Scholar 

  11. Ulanov, G.M., Regulirovanie po vozmushcheniyu. Kompensatsiya vozmushchenii i invariantnost’ (Disturbance-based Control. Compensation of Disturbances and Invariance), Moscow: Gosenergoizdat, 1960.

    Google Scholar 

  12. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (A Course in the Theory of Automatic Control), Moscow: Nauka, 1986.

    Google Scholar 

  13. Schweppe, F.C., Uncertain Dynamic Systems, New Jersey: Prentice Hall, 1973.

    Google Scholar 

  14. Kurzhanski, A.B. and Valyi, I., Ellipsoidal Calculus for Estimation and Control, Boston: Birkhäuser, 1997.

    Book  MATH  Google Scholar 

  15. Polyak, B.T. and Topunov, M.V., Suppression of Bounded Exogenous Disturbances: Output Feedback, Autom. Remote Control, 2008, vol. 69, no. 5, pp. 801–818.

    Article  MathSciNet  MATH  Google Scholar 

  16. Polyak, B.T. and Topunov, M.V., Filtering under Nonrandom Disturbances: The Method of Invariant Ellipsoids, Dokl. Math., 2008, vol. 77, no. 1, pp. 158–162.

    Article  MathSciNet  MATH  Google Scholar 

  17. Khlebnikov, M.V., Robust Filtering under Nonrandom Disturbances: The Invariant Ellipsoid Approach, Autom. Remote Control, 2009, vol. 70, no. 1, pp. 133–146.

    Article  MathSciNet  MATH  Google Scholar 

  18. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Nonlinear Systems with Bounded Multiplicative Disturbances, in Problems in Stability and Control. Tribute to the 80th Anniversary of Academician V.M. Matrosov, Moscow: Fizmatlit, pp. 271–299.

  19. Grant, M. and Boyd, S., CVX: Matlab Software for Disciplined Convex Programming (web page and software), ver. 1.21. URL: http://stanfordedu/~boyd/cvx.

  20. Agafonov, P.A. and Chestnov, V.N., H8-Control for Guaranteed Simultaneous Input and Output Stability Margins for a Multivariate System, Autom. Remote Control, 2004, vol. 65, no. 9, pp. 1452–1460.

    Article  MathSciNet  MATH  Google Scholar 

  21. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., An LMI Approach to Structured Sparse Feedback Design in Linear Control Systems, Proc. 12 Eur. Control Conf. (ECC’13), Zürich, Switzerland, July 17–19, 2013, pp. 833–838.

    Google Scholar 

  22. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Sparse Feedback in Linear Control Systems, Autom. Remote Control, 2014, vol. 75, no. 12, pp. 2099–2111.

    Article  MathSciNet  MATH  Google Scholar 

  23. Tropp, J.A., Algorithms for Simultaneous Sparse Approximation. Part II: Convex Relaxation, Signal Proc. (Special Issue “Sparse Approximations in Signal and Image Processing”), 2006, vol. 86, pp. 589–602.

    MATH  Google Scholar 

  24. Quattoni, A., Carreras, X., Collins, M., and Darrell, T., An Efficient Projection for 1,8 Regularization, Proc. 26th Int. Conf. Machine Learning (ICML 2009), Montreal, Canada, June 14–18, 2009, pp. 857–864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Khlebnikov.

Additional information

Original Russian Text © M.V. Khlebnikov, 2016, published in Avtomatika i Telemekhanika, 2016, No. 7, pp. 20–32.

This paper was recommended for publication by B.T. Polyak, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikov, M.V. Control of linear systems subjected to exogenous disturbances: Combined feedback. Autom Remote Control 77, 1141–1151 (2016). https://doi.org/10.1134/S000511791607002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791607002X

Navigation