Abstract
This paper introduces a new physical considerations-based approach to the development of control algorithms for dynamic plants, which involves a compensation principle as follows. Being external with respect to a controlled plant, control actions (compensating signals) are applied with the opposite sign to the corresponding variables of the inverse mathematical model of the plant. Regularization of the resulting system is performed by incorporating etalon filters in compensation loops. The described method is used to solve a control problem for the linear stable multidimensional plants with additive external influences and compensation of the perturbations affecting the output variables.
Similar content being viewed by others
References
Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya, tom 3: Sintez regulyatorov sistem avtomaticheskogo upravleniya (Methods of Classical and Modern Theory of Automatic Control, vol. 3: Regulator Synthesis for Automatic Control Systems), Pupkov, K.A. and Egupov, N.D., Eds., Moscow: Mosk. Gos. Tekhn. Univ. im. Baumana, 2004.
Dorf, R.C. and Bishop, R.H., Modern Control Systems, Menlo Park: Addison-Wesley, 1998, 8th ed. Translated under the title Sovremennye sistemy upravleniya, Moscow: Laboratoriya Bazovykh Znanii, 2002.
Sovremennye metody proektirovaniya sistem avtomaticheskogo upravleniya. Analiz i sintez (Modern Design Methods for Automatic Control Systems. Analysis and Synthesis), Petrov, B.N., Solodovnikov, V.V., and Topcheev, Yu.V., Eds., Moscow: Mashinostroenie, 1967.
Tsypkin, Ya.Z., Osnovy teorii avtomaticheskikh sistem (Fundamentals of Automatic Control Theory), Moscow: Nauka, 1977.
Andrievskii, B.R. and Fradkov, A.L., Izbrannye glavy teorii avtomaticheskogo upravleniya (Selected Chapters of Automatic Control Theory), St. Petersburg: Nauka, 2000.
Isermann, R., Digital Control Systems, New York: Springer-Verlag, 1981. Translated under the title Tsifrovye sistemy upravleniya, Moscow: Mir, 1984.
Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (A Course on Automatic Control Theory), Moscow: Nauka, 1986.
Miroshnik, I.V., Teoriya avtomaticheskogo upravleniya. Lineinye sistemy (Automatic Control Theory. Linear Systems), St. Petersburg: Piter, 2005.
Phillips, C. and Harbor, R., Feedback Control Systems, Englewood Cliffs: Prentice Hall, 2000, 4 ed. Translated under the title Sistemy upravleniya s obratnoi svyaz’yu, Moscow: Laboratoriya Bazovykh Znanii, 2001.
Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.
Andreev, A.Yu., Upravlenie konechnomernymi lineinymi ob”ektami (Control of Finite-Dimensional Linear Plants), Moscow: Nauka, 1976.
Kuzovkov, N.T., Modal’noe upravlenie i modal’nye ustroistva (Modal Control and Modal Devices), Moscow: Mashinostroenie, 1976.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © G.K. Shadrin, 2016, published in Avtomatika i Telemekhanika, 2016, No. 7, pp. 33–46.
This paper was recommended for publication by A.L. Fradkov, a member of the Editorial Board
Rights and permissions
About this article
Cite this article
Shadrin, G.K. A physics-based approach to control systems design using compensation of controlled plant dynamics and perturbations. Autom Remote Control 77, 1152–1162 (2016). https://doi.org/10.1134/S0005117916070031
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117916070031