Skip to main content

Stability study of a power system with unipolar electromagnetic brake

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the system of nonlinear differential equations describing a simplest power system with a unipolar installation, the electromagnetic brake (EMB). Behavior of the system was considered with and without EMB. By constructing a special Lyapunov function, local asymptotic stability of the system with EMB was proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharov, Yu.V., Yankovich, I.D., and Kuznetsov, O.N., Method for Improving Dynamic Stability and Damping Oscillation of Electric-Power Systems and Device for Its Realisation, RFPatent no. 2 339 144, Buyll. Izobret., 2008, no. 32 www.fips.ru.

  2. Antipova, N.A. and Kuznetsov, O.N., Determination of the Technical Characteristics of the Electromagnetic Brake for Improving Dynamic Stability of EPS, Vestn. MEI, 2012, no. 1, pp. 54–59.

    Google Scholar 

  3. Panin, A.V., Chumachenko, V.V., and Kuznetsov, O.N., Comparison of Efficiency of the Laws of Control of the Electromagnetic Brake, Izv. Vyssh. Uchebn. Zaved., Probl. Energ., 2014, nos. 5–6.

  4. Tricomi, F., Integrazione di un’equazione differenziale presentatasi in electrotecnica, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2, 1933, ser. 2, no. 1, pp. 1–20.

    MathSciNet  MATH  Google Scholar 

  5. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Oscillation Theory), Moscow: Nauka, 1981, 2nd ed.

    Google Scholar 

  6. Reissig, R., Sansone, G., and Conti, R., Qualitative Theorie nichtlinearer Differentialgleichungen, Roma: Edizioni Cremonese, 1963. Translated under the title Kachestvennaya teoriya nelineinykh differential’nykh uravnenii, Moscow: Nauka, 1974.

    MATH  Google Scholar 

  7. Malkin, I.G., Teoriya ustoichivosti dvizheniya (Motion Stability Theory), Moscow: Nauka, 1966, 2nd ed.

    Google Scholar 

  8. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Controls with Nonunique Equilibrium State), Moscow: Nauka, 1978. English translation: World Scientific, 2004.

    MATH  Google Scholar 

  9. Leonov, G.A., Vvedenie v teoriyu upravleniya (Introduction to the Control Theory), St. Petersburg: S.-Peterburg. Gos. Univ., 2004.

    Google Scholar 

  10. Pai, M.A., Energy Function Analysis for Power System Stability, Boston: Kluwer, 1989.

    Book  Google Scholar 

  11. Venikov, V.A., Perekhodnye elektromekhanicheskie protsessy v elektricheskikh sistemakh (Transient Processes in Electrical Systems), Moscow: Vysshaya Shkola, 1985, 4th ed.

    Google Scholar 

  12. Galaz, M., Ortega, R., Bazanella, A., and Stankovich, A., An Energy-shaping Approach to the Design of Excitation Control of Synchronous Generators, Automatica, 2003, vol. 39, no. 1, pp. 111–119.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Polyak.

Additional information

Original Russian Text © B.T. Polyak, O.N. Kuznetsov, V.V. Chumachenko, 2016, published in Avtomatika i Telemekhanika, 2016, No. 9, pp. 58–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B.T., Kuznetsov, O.N. & Chumachenko, V.V. Stability study of a power system with unipolar electromagnetic brake. Autom Remote Control 77, 1557–1566 (2016). https://doi.org/10.1134/S0005117916090046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916090046