Skip to main content
Log in

New structures of the concurrent error detection systems for logic circuits

  • Safety, Viability, Reliability, Technical Diagnostics
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Proposed were new structures for concurrent error detection systems of the combinatorial logic circuits based on the codes with summation of the weighted transitions and their modifications. They were compared with the traditional systems of duplication and check by the Berger code. The structure based on the code with summation of the weighted transitions allowed one to improve the index of realization complexity as compared with the duplication system by 4 % on the average. The structure obtained by modifying the code with summation of the weighted transitions into the optimal code enables one to improve this index almost twice as much as compared with the system of checking by the Berger code. At that, this system has a better index of error detection. In certain cases, the structure of the concurrent error detection system on the basis of the optimal code is superior in complexity to the system of parity check.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slabakov, E.V. and Sogomonyan, E.S., Self-check Computing Devices and Systems (A Survey), Autom. Remote Control, 1981, vol. 42, no. 11, pp. 1551–1566.

    MATH  Google Scholar 

  2. Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Selftesting Devices and Failsafe Systems), Moscow: Radio i Svyaz’, 1989.

    Google Scholar 

  3. Sapozhnikov, V.V. and Sapozhnikov, Vl.V., Samoproveryaemye diskretnye ustroistva (Self-testing Discrete Devices), St. Petersburg: Energoatomizdat, 1992.

    Google Scholar 

  4. Pradhan, D.K., Fault-Tolerant Computer System Design, New York: Prentice Hall, 1996.

    Google Scholar 

  5. Touba, N.A. and McCluskey, E.J., Logic Synthesis of Multilevel Circuits with Concurrent Error Detection, IEEE Trans. Comput.-Aided Design Integrat., 1997, vol. 16, pp. 783–789.

    Article  Google Scholar 

  6. Nicolaidis, M. and Zorian, Y., On-line Testing for VLSI—A Compendium of Approaches, J. Electron. Testing: Theory Appl., 1998, no. 12, pp. 7–20.

    Article  Google Scholar 

  7. Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-Checking Synchronous FSM Network Design with Low Overhead, VLSI Design, 2000, vol. 11, no. 1, pp. 47–58.

    Article  Google Scholar 

  8. Mitra, S. and McClaskey, E.J., Which Concurrent Error Detection Scheme to Choose?, in Proc. Int. Test Conf., 2000, USA, Atlantic City, October 3–5, 2000, pp. 985–994.

    Google Scholar 

  9. Lala, P.K., Self-Checking and Fault-Tolerant Digital Design, San Francisco: Morgan Kaufmann, 2001.

    Google Scholar 

  10. Levin, I., Ostrovsky, V., Keren, O., and Sinelnikov, V., Cascade Scheme for Concurrent Errors Detection, in Proc. 9th EUROMICRO Conf. Digital Syst. Design (DSD’06), pp. 359–368.

  11. Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, New Jersey: Wiley, 2006.

    Book  MATH  Google Scholar 

  12. Wang, L-T., Stroud, C.E., and Touba, N.A., System-on-Chip Test Architectures: Nanometer Design for Testability, San Francisco: Morgan Kaufmann, 2008.

    Google Scholar 

  13. Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), Hershey: IGI Global, 2011.

    Book  Google Scholar 

  14. Parkhomenko, P.P. and Sogomonyan, E.S., Osnovy tekhnicheskoi diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) (Fundamentals of the Technical Diagnosis (Diagnostic Algorithm Optimization, Hardware Facilities)), Moscow: Energoatomizdat, 1981.

    Google Scholar 

  15. Sentovich, E.M., Singh, K.J., Lavagno, L., et al., SIS: A System for Sequential Circuit Synthesis, Electron. Res. Labor., Department Electr. Engin. and Comput. Sci., California Univ., Berkeley, May 4, 1992.

    Google Scholar 

  16. Kunz, W. and Menon, P.R., Multi-Level Logic Optimization by Implication Analysis, in Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD’94), San Jose, CA, November, 1994, pp. 6–13.

    Google Scholar 

  17. Aksjonova, G.P., Necessary and Sufficient Conditions for Design of Completely Checkable Modulo 2 Convolution Circuits, Autom. Remote Control, 1979, vol. 40, no. 9, pp. 1362–1369.

    Google Scholar 

  18. Ghosh, S., Basu, S., and Touba, N.A., Synthesis of Low Power CED Circuits Based on Parity Codes, in Proc. 23rd IEEE VLSI Test Sympos. (VTS’05), 2005, pp. 315–320.

    Chapter  Google Scholar 

  19. Aksenova, G.P., On Functional Checking of the Discrete Devices under Imprecise Data, Probl. Upravlen., 2008, no. 5, pp. 62–66.

    Google Scholar 

  20. Berger, J.M., A Note on Error Detecting Codes for Asymmetric Channels, Inform. Control, 1961, vol. 4, no. 1, pp. 68–73.

    Article  MATH  Google Scholar 

  21. Berger, J.M., A Note on Burst Detecting Sum Codes, Inform. Control, 1961, vol. 4, nos. 2–3, pp. 297–299.

    Article  MathSciNet  Google Scholar 

  22. Das, D. and Touba, N.A., Weight-Based Codes and Their Application to Concurrent Error Detection of Multilevel Circuits, in Proc. 17th IEEE VLSI Test Sympos., USA, CA, Dana Point, April 25–29, 1999, pp. 370–376.

    Google Scholar 

  23. Ghosh, S., Lai, K.W., Jone, W.B., and Chang, S.C., Scan Chain Fault Identification UsingWeight-Based Codes for SoC Circuits, in Proc. 13th Asian Test Sympos., Taiwan, Kenting, November 15–17, 2004, pp. 210–215.

    Chapter  Google Scholar 

  24. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl., and Nikitin, D., Sum Code Formation with Minimum Total Number of Undetectable Errors in Data Vectors, in Proc. 13 IEEE East-West Design & Test Sympos. (EWDTS’2015), Batumi, Georgia, September 26–29, 2015, pp. 141–148.

    Google Scholar 

  25. Saposhnikov, V. and Saposhnikov, Vl., New Code for Fault Detection in Logic Circuits, in Proc. 4 Int. Conf. Unconvent. Electromech. Electr. Syst., St. Petersburg: Russia, June 21–24, 1999, pp. 693–696.

    Google Scholar 

  26. Mehov, V., Saposhnikov, V., Sapozhnikov, Vl., and Urganskov, D., Concurrent Error Detection Based on New Code with Modulo Weighted Transitions between Information Bits, in Proc. 7 IEEE East-West Design & Test Workshop (EWDTW’2007), Erevan, Armenia, September 25–30, 2007, pp. 21–26.

    Google Scholar 

  27. Mekhov, V.B., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Checking of Combinational Circuits Basing on Modification Sum Codes, Autom. Remote Control, 2008, vol. 69, no. 8, pp. 1411–1422.

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, S., Logic Synthesis and Optimization Benchmarks User Guide: Version 3.0, Technical Report 1991-IWLS-UG-Saeyang, MCNC, 1991.

    Google Scholar 

  29. Collection of Digital Design Benchmarks. http://ddd.fit.cvut.cz/prj/Benchmarks/.

  30. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Construction of a Modified Berger Code with Minimal Number of Nondetectable Errors of Data Digits, Elektron. Model., 2012, vol. 34, no. 6, pp. 17–29.

    Google Scholar 

  31. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On Summation Code Properties in Functional Control Circuits, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1117–1123.

    Article  MathSciNet  MATH  Google Scholar 

  32. Blyudov, A., Efanov, D., Sapozhnikov, V., and Sapozhnikov, Vl., Properties of Code with Summation for Logical Circuit Test Organization, in Proc. 10 IEEE East-West Design & Test Sympos. (EWDTS’2012), Kharkov, Ukraine, September 14–17, 2012, pp. 114–117.

    Google Scholar 

  33. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Summation Codes for Organization of Control of Combinational Circuits, Autom. Remote Control, 2013, vol. 74, no. 6, pp. 1020–1028.

    Article  MATH  Google Scholar 

  34. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl., and Blyudov, A., On the Problem of Selection of Code with Summation for Combinational Circuit Test Organization, in Proc. 11 IEEE East-West Design & Test Sympos. (EWDTS’2013), Rostov-on-Don, Russia, September 27–30, 2013, pp. 261–266.

    Google Scholar 

  35. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On Codes with Summation of Unit Bits in Concurrent Error Detection Systems, Autom. Remote Control, 2014, vol. 75, no. 8, pp. 1460–1470.

    Article  MATH  Google Scholar 

  36. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Code with Summation in the Design of Railway Systems of Automation and Remote Control Based on Programmable Logic Integral Circuits, Avtomat. Transport, 2015, vol. 1, no. 1, pp. 84–107.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sapozhnikov.

Additional information

Original Russian Text © V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov, V.V. Dmitriev, 2017, published in Avtomatika i Telemekhanika, 2017, No. 2, pp. 128–143.

This paper was recommended for publication by A.P. Krishchenko, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikov, V.V., Sapozhnikov, V.V., Efanov, D.V. et al. New structures of the concurrent error detection systems for logic circuits. Autom Remote Control 78, 300–312 (2017). https://doi.org/10.1134/S0005117917020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917020096

Keywords

Navigation