Skip to main content
Log in

Principle component analysis: Robust versions

  • Data Analysis
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Modern problems of optimization, estimation, signal and image processing, pattern recognition, etc., deal with huge-dimensional data; this necessitates elaboration of efficient methods of processing such data. The idea of building low-dimensional approximations to huge data arrays is in the heart of the modern data analysis.

One of the most appealing methods of compact data representation is the statistical method referred to as the principal component analysis; however, it is sensitive to uncertainties in the available data and to the presence of outliers. In this paper, robust versions of the principle component analysis approach are proposed along with numerical methods for their implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruckstein, A.M., Donoho, D.L., and Elad, M., From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images, SIAM Rev., 2009, vol. 51, no. 1, pp. 34–81.

    Article  MathSciNet  MATH  Google Scholar 

  2. Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space, Philosoph. Mag., 1901, vol. 2, no. 6, pp. 559–572.

    MATH  Google Scholar 

  3. Jolliffe, I.T., Principal Component Analysis, New York: Springer-Verlag, 2002.

    MATH  Google Scholar 

  4. Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika: Klassifikatsiya i snizhenie razmernosti (Applied Statistics: Classification and Dimension Reduction), Moscow: Finansy i Statistika, 1989.

    MATH  Google Scholar 

  5. Box, G.E.P., Non-Normality and Tests on Variances, Biometrika, 1953, vol. 40, pp. 318–335.

    Article  MathSciNet  MATH  Google Scholar 

  6. Huber, P.J., Robust Statistics, New York: Wiley, 1981.

    Book  MATH  Google Scholar 

  7. Candès, E.J., Li, X., Ma, Y., and Wright, J., Robust Principal Component Analysis? J. Assoc. Comput. Math., 2011, vol. 58, no. 3, Article11.

    Google Scholar 

  8. Wright, J., Peng, Y., Ma, Y., et al., Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices by Convex Optimization, Proc. 23rd Ann. Conf. Neural Inform. Proc. Syst. (NIPS 2009), Vancouver, Canada, 2009, pp. 2080–2088.

    Google Scholar 

  9. Zhou, Z., Li, X., Wright, J., et al., Stable Principal Component Pursuit, Proc. IEEE Int. Symp. Inform. Theory (ISIT 2010), Austin, Texas, 2010, pp. 1518–1522.

    Google Scholar 

  10. Maronna, R.A., Martin, D., and Yohai, V., Robust Statistics, Chichester: Wiley, 2006.

    Book  MATH  Google Scholar 

  11. Maronna, R.A. and Yohai, V.J., Robust Estimation ofMultivariate Location and Scatter, in Encyclopedia of Statistical Sciences, New York: Wiley, 1998, pp. 589–596.

    Google Scholar 

  12. Croux, C. and Haesbroeck, G., Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies, Biometrika, 2000, vol. 87, no. 3, pp. 603–618.

    Article  MathSciNet  MATH  Google Scholar 

  13. Shevlyakov, G.L. and Vilchevski, N.O., Robustness in Data Analysis: Criteria and Methods, Utrecht: VSP, 2002.

    Google Scholar 

  14. Poljak, B.T. and Tsypkin, Ja.Z., Robust Identification, Automatica, 1980, vol. 16, no. 1, pp. 53–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. Mudrov, V.I. and Ivlev, A.A., Mazhoranty N’yutona v prikladnykh zadachakh: teoriya, algoritmy, programmy (Newton Majorants in Applied Problems: Theory, Algorithms, Codes), Moscow: URSS, 2014.

    Google Scholar 

  16. Arslan, O., Convergence Behavior of an Iterative Reweighting Algorithm to Compute Multivariate M-Estimates for Location and Scatter, J. Statist. Plann. Inference, 2004, vol. 118, nos. 1–2, pp. 115–128.

    Article  MathSciNet  MATH  Google Scholar 

  17. Weiszfeld, E., Sur le point pour lequel la somme des distances de n points donnés est minimum, Tohoku Math. J., 1937, vol. 43, pp. 355–386.

    MATH  Google Scholar 

  18. Plastria, F., Asymmetric Distances, Semidirected Networks and Majority in Fermat–Weber Problems, Ann. Oper. Res., 2009, vol. 167, no. 1, Article121.

    Google Scholar 

  19. UC Irvine Machine Learning Repository, URL: http://archive.ics.uci.edu/ml/.

  20. The Data and Story Library (DASL), URL: http://lib.stat.cmu.edu/DASL/DataArchive.html.

  21. Sleep In Mammals, Dataset, URL: http://www.statsci.org/data/general/sleep.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Polyak.

Additional information

Original Russian Text © P.T. Polyak, M.V. Khlebnikov, 2017, published in Avtomatika i Telemekhanika, 2017, No. 3, pp. 130–148.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B.T., Khlebnikov, M.V. Principle component analysis: Robust versions. Autom Remote Control 78, 490–506 (2017). https://doi.org/10.1134/S0005117917030092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917030092

Keywords

Navigation