Skip to main content
Log in

The models and structure of onboard measurements of three-dimensional physical fields

  • Control Sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The airborne measurement systems of geophysical fields are considered. The applicability of such systems in navigation and geophysics is analyzed. The existing gravimetric, magnetometric and electromagnetic systems are briefly overviewed. The structure of the airborne measurement systems of geophysical fields and the associated mathematical models are discussed in detail. Finally, the issues of data processing are studied and the solution approaches to the ill-posed problems are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sander, S., Argyle, M., Elieff, S., Ferguson, S., Lavoie, V., and Sander, L., The AIRGrav Airborne Gravity System, Abstr. ASEG-PESA Airborne Gravity 2004 Workshop, Lane, R., Ed., Australia, 2004, pp. 49–54.

    Google Scholar 

  2. Brady, N., A Turnkey Airborne Gravity System—Concept to Reality, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 28–36.

    Google Scholar 

  3. Krasnov, A.A., Sokolov, A.V., and Elinson, L.S, A New Air-Sea Shelf Gravimeter of the Chekan Series, Girosk. Navigats., 2014, no. 1(84), pp. 26–34.

    Google Scholar 

  4. Olson, D., GT-1A and GT-2A Airborne Gravimeters: Improvements in Design, Operation, and Processing from 2003 to 2010, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 152–171.

    Google Scholar 

  5. Golovan, A.A., Bolotin, Yu.V., and Parusnikov, N.A, The Test Results of Modern Russian Airborne Gravity Complexes, Razvedka Okhrana Nedr, 2002, no. 2, pp. 18–20.

    Google Scholar 

  6. Mikhlin, B.Z., Seleznev, V.P., and Seleznev, A.V., Geomagnitnaya navigatsiya (Geomagnetic Navigation), Moscow: Mashinostroenie, 1976.

    Google Scholar 

  7. Dmitriev, S.P., Vysokotochnaya morskaya navigatsiya (High-Precision Marine Navigation), Leningrad: Sudostroenie, 1991.

    Google Scholar 

  8. May, M.B, Gravity Navigation, IEEE PLANS (Position Location and Navigation Symp.), San Diego, November 6–9, 1978, pp. 212–218.

    Google Scholar 

  9. Zhang, X. and Zhao, Y, Analysis of Key Technologies in Geomagnetic Navigation, Seventh Intern. Symp. on Instrumentation and Control Technology: Measurement Theory and Systems and Aeronautical Equipment, Proc. SPIE, 2008, vol. 7128, pp. (71282J–1)–(71282J-6).

    Article  Google Scholar 

  10. Dzhandzhgava, G.I., Avgustov, L.I., and Soroka, A.I, Navigation Using the Anomaly Gravitational Field of the Earth. Structure Choice and Justification of the Requirements Applied to Navigation System Subject to the Existing Mapping Software and Hardware, Aviakosmich. Priborostroen., 2002, no. 6, pp. 63–68.

    Google Scholar 

  11. Scherbinin, V.V. and Shevtsova, E.V, The Color Pictures Fragmentation Algorithms for Formation of Different Seasonal Reference Images of the Aircraft Correlation-Extremal Navigation Systems, Izv. Yuzhn. Fed. Univ., Tekhn. Nauki, 2010, no. 3, pp. 87–92.

    Google Scholar 

  12. Krasovskii, A.A., Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh sistem (The Theory of Correlation-Extremal Navigation Systems), Moscow: Nauka, 1979.

    Google Scholar 

  13. Korrelyatsionno-ekstremal’nye sistemy (Correlation-Extremal Systems), Tarasenko, V.P., Ed., Tomsk: Tomsk. Gos. Univ., 1986.

  14. Dmitriev, S.P. and Stepanov, O.A, Multialternative Filtration in Processing of Navigational Data, Radiotekhnika, 2004, no. 7, pp. 11–17.

    Google Scholar 

  15. Stepanov, O.A. and Toropov, A.B, Sequential Monte Carlo Methods for Terrain-Aided Navigation, Izv. Vuzov. Priborostroen., 2010, vol. 53, no. 10, pp. 49–54.

    Google Scholar 

  16. Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications, Linkoping: Linkoping Univ., 1999.

    Google Scholar 

  17. OAO Ramenskoe Instrument Design Engineering Bureau. http://www.rpkb.ru/lines-of-business/electronicdirection/magnetometers/magnetometers-digital-three-component/ (Accessed March 24, 2015).

  18. Hardwick, C.D., Non-orientated Cesium Sensors for Airborne Magnetometry and Gradiometry, Geophysics, 1984, vol. 49, no. 11, pp. 2024–2031.

    Article  Google Scholar 

  19. Noriega, G, Aeromagnetic Compensation in Gradiometry—Performance, Model Stability, and Robustness, IEEE Geosci. Remote Sensing Lett., 2014, vol. PP, no. 99 (early publication), pp. 1–5.

    Google Scholar 

  20. Dransfield, M., Le Roux, T., and Burrows, D., Airborne Gravimetry and Gravity Gradiometry at Fugro Airborne Surveys, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 49–57.

    Google Scholar 

  21. Murphy, C.A., Recent Developments with Air-FTG, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 142–151.

    Google Scholar 

  22. Avgustov, L.I. and Soroka, A.I, Airborne Gravivariometer. Experience of the Development and Test Results, Mekhatron., Avtomatiz., Upravlen., 2009, no. 3, pp. 51–56.

    Google Scholar 

  23. Killeen, P.G., Exploration Trends and Developments in 2007, Sylvester, B., Ed., Northern Miner,2007, vol. 93, no. 1.

  24. Brodie, R., Green, A., and Munday, T., Constrained Inversion of Resolve Electromagnetic Data, Riverland, South Australia: CRC LEME Open File Report 175,2004.

    Google Scholar 

  25. Fountain, D., 60 Years of Airborne EM—Focus on the Last Decade, Proc. 5th Int. Conf. on Airborne Electromagnetics (AEM2008), Haikko Manor, Finland, 2008.

    Google Scholar 

  26. Telford, W.M., Geldart, L.R., and Sheriff, R.E., Applied Geophysics, Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  27. Instruktsiya po elektrorazvedke: nazemnaya elektrorazvedka, skvazhinnaya elektrorazvedka, shakhtorudnichnaya elektrorazvedka, aeroelektrorazvedka, morskaya elektrorazvedka (Manual on Geoelectrometry: Ground Geoelectrometry, Spinner Geoelectrometry, Mine Geoelectrometry, Airborne Geoelectrometry, and Marine Geoelectrometry), Reihert, L.A., Ed., Leningrad, Nedra, 1984.

  28. Karshakov, E.V, Calibration Problem for Electromagnetic Relative Positioning System, Upravlen. Bol’sh. Sist., 2012, no. 37, pp. 250–268.

    Google Scholar 

  29. International Geomagnetic Reference Field, URL: http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html (Accessed February 2, 2015).

  30. Torge, W., Gravimetry, Berlin: W. de Gryuer, 1989. Translated under the title Gravimetriya, Moscow: Mir, 1999.

    MATH  Google Scholar 

  31. Tkhorenko, M.Yu., Karshakov, E.V., Pavlov, B.V., and Kozlov, A.V, Algorithm to Position an Object Moving in the Low-frequency Electromagnetic Field, Autom. Remote Control, 2015, vol. 76, no. 11, pp. 2033–2044.

    Article  MATH  Google Scholar 

  32. Tikhonov, A.N, On the Stability of Inverse Problems, Dokl. Akad. Nauk SSSR, 1943, vol. 39, no. 5, pp. 195–198.

    MathSciNet  Google Scholar 

  33. Ivanov, V.K, On Linear Ill-Posed Problems, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 2, pp. 270–272.

    MathSciNet  MATH  Google Scholar 

  34. Lavrentiev, M.M, On the Cauchy Problem for Laplace’s Equation, Izv. AN SSSR, Ser. Mat., 1956, vol. 20, no. 6, pp. 819–842.

    MathSciNet  Google Scholar 

  35. Khalfin, L.A, Information Theory of Geophysical Interpretation, Dokl. Akad. Nauk SSSR, 1958, vol. 122, no. 6, pp. 1007–1010.

    Google Scholar 

  36. Franklin, J.N., Well-Posed Stochastic Extensions of Ill-Posed Linear Problems, J. Math. Appl., 1970, vol. 31, pp. 682–716.

    MathSciNet  MATH  Google Scholar 

  37. Tarkhov, A.G., Bondarenko, V.M., and Nikitin, A.A., Kompleksirovanie geofizicheskikh metodov (Integrated Geophysics), Moscow: Nedra, 1982.

    Google Scholar 

  38. Dmitriev, V.I., Zhdanov, M.S., Morozov, V.A., et al., Vychislitel’naya matematika i tekhnika v razvedochnoi geofizike (Calculus Mathematics and Techniques in Exploration Geophysics), Moscow: Nedra, 1990.

    Google Scholar 

  39. Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Philadelphia: SIAM, 2005.

    Book  MATH  Google Scholar 

  40. Forsberg, R, A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling, Ohio State Univ., Sci. Report no. 5, 1984.

    Google Scholar 

  41. Bolotin, Yu.V. and Popelenskii, M.Yu., Accuracy Analysis of Airborne Gravity when Gravimeter Parameters Are Identified in Flight, Fund. Prikl. Mat., 2005, vol. 11, no. 7, pp. 167–180.

    Google Scholar 

  42. Karshakov, E.V. and Kharichkin, M.V, A Stochastic Estimation Problem at Aeromagnetometer Deviation Compensation, Autom. Remote Control, 2008, vol. 69, no. 7, pp. 1162–1170.

    Article  MathSciNet  MATH  Google Scholar 

  43. Volkovitskiy, A.K., Karshakov, E.V., Moilanen, E.V., and Pavlov, B.V, IntegrationMagnetic Gradiometer Correlation-Extremal and Inertial Navigation Systems Coupling, Proc. XIX St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg, 2012, pp. 169–171.

    Google Scholar 

  44. Volkovitskiy, A.K., Karshakov, E.V., and Pavlov, B.V, Positioning of Moving Objects in Low-Frequency Electromagnetic Field. I. Basic Algorithm of Relative Positioning, Probl. Upravlen., 2013, no. 1, pp. 57–62.

    Google Scholar 

  45. Volkovitskiy, A.K., Karshakov, E.V., and Pavlov, B.V, The Distribution of Soil Effective Resistivity as a Navigation Field for Correlation-Extremal Systems, Izv. Yuzhn. Fed. Univ., Tekhn. Nauki, 2012, no. 3, pp. 113–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Vovenko.

Additional information

Original Russian Text © T.A. Vovenko, A.K. Volkovitskiy, B.V. Pavlov, E.V. Karshakov, M.Yu. Tkhorenko, 2015, published in Problemy Upravleniya, 2015, No. 3, pp. 59–68.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vovenko, T.A., Volkovitskiy, A.K., Pavlov, B.V. et al. The models and structure of onboard measurements of three-dimensional physical fields. Autom Remote Control 78, 1115–1127 (2017). https://doi.org/10.1134/S000511791706011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791706011X

Navigation