Skip to main content
Log in

Aeromagnetic Gradiometry and Its Application to Navigation

  • Control Sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Modern methods of airborne magnetic field measurements are described. A stochastic algorithm to compensate the deviations between the indications of an aeromagnetometer and an aeromagnetic gradiometer is considered. An integration algorithm for the inertial and correlation-extremal navigation systems is briefly described. An advantage of using magnetic field gradient measurements as navigational data is justified. The performance of the integration algorithm is illustrated by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dzhandzhgava, G.I., Avgustov, L.I., and Soroka, A.I., Navigation in the Anomalous Gravity Field of the Earth. The Choice of the Structure and Rationale of Requirements for Navigation System Based on Existing Cartographic Features and Hardware, Aviakosm. Priborostr., 2002, no. 6, pp. 63–68.

    Google Scholar 

  2. Peshekhonov, V.G., Navigation System, Vestn. Ross. Akad. Nauk, 1997, vol. 67, no. 1, pp. 43–52.

    Google Scholar 

  3. Shcherbinin, V.V. and Shevtsova, E.V., Fragmentation of Color Photos to Generate Multiseasonal Reference Images in Aircraft Vision-Based CENS, Izv. Yuzhn. Federaln. Univ. Tekhn. Nauki, 2010, no. 3, pp. 87–92.

    Google Scholar 

  4. Xiaoming, Z. and Yan, Z., Analysis of Key Technologies in Geomagnetic Navigation, 7th Int. Symp. on Instrumentation and Control Technology: Measurement Theory and Systems and Aeronautical Equipment, 2008, vol. 7128, pp. 71282J-1–71282J-6.

    Article  Google Scholar 

  5. Baklitskii, V.K., Korrelyatsionno-ekstremal’nye metody navigatsii i navedeniya (Correlation-extremal Methods of Navigation and Guidance), Tver: Knizhnyi Klub, 2009.

    Google Scholar 

  6. Beloglazov, I.N., Dzhandzhgava, G.I., and Chigin, G.P., Osnovy navigatsii po geofizicheskim polyam (Fundamentals of Navigation by Geophysical Fields), Moscow: Nauka, 1985.

    Google Scholar 

  7. Krasovskii, A.A., Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh navigatsionnykh sistem (Theory of Correlation-extremal Navigation Systems), Moscow: Nauka, 1979.

    Google Scholar 

  8. Beloglazov, I.N. and Tarasenko, V.P., Korrelyatsionno-ekstremal’nye sistemy (Correlation-Extremal Systems), Moscow: Sovetskoe Radio, 1974.

    Google Scholar 

  9. Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications, Linkoping: Linkoping Univ., 1999.

    Google Scholar 

  10. Dmitriev, S.P. and Shimelevich, L.I., Nelineinye zadachi obrabotki navigatsionnoi informatsii (Nonlinear Navigational Data Processing), Leningrad: TsNII Rumb, 1977.

    Google Scholar 

  11. Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory in Navigational Data Processing Problems), St. Petersburg: TsNII Elektropribor, 1998.

    Google Scholar 

  12. Stepanov, O.A. and Toropov, A.B., Nonlinear Filtering for Map-Aided Navigation. Part I. An Overview of Algorithms, Giroskop. Navigats., 2015, vol. 90, no. 3, pp. 102–125.

    Article  Google Scholar 

  13. Dmitriev, S.P. and Stepanov, O.A., Multiple-alternative Filtering in Navigational Data Processing Problems, Radiotekhn., 2004, no. 7, pp. 11–17.

    Google Scholar 

  14. Stepanov, O.A. and Toropov, A.B., The Use of Sequential Monte Carlo Methods in the Correlation-Extremal Navigation Problem, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2010, vol. 53, no. 10, pp. 49–54.

    Google Scholar 

  15. Kontarovich, R.S. and Babayants, P.S., Airborne Geophysics—An Effective Tool for Exploration Tasks, Razvedka Okhrana Nedr, 2011, no. 7, pp. 3–10.

    Google Scholar 

  16. Volkovitskiy, A.K., Karshakov, E.V., Pavlov, B.V., and Tkhorenko, M.Yu., Airborne Physical Fields Measurements as Navigational Aids, XXIX Ostriakov’s Memorial Conf., St. Petersburg: TsNII Elekropribor, 2014, pp. 232–241.

    Google Scholar 

  17. Purcell, E., Electricity and Magnetism, Cambridge: Cambridge Univ. Press, 2013, 3rd ed.

    Google Scholar 

  18. Telford, W.M., Geldart, L.R., and Sheriff, R.E., Applied Geophysics, Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  19. Noriega, G., Aeromagnetic Compensation in Gradiometry—Performance, Model Stability, and Robustness, IEEE Geosci. Remote Sens. Lett., 2015, vol. 12, no. 1, pp. 117–121.

    Article  Google Scholar 

  20. Foley, C.P., Tilbrook, D.L., Leslie, K.E., et al., Geophysical Exploration Using Magnetic Gradiometry Based on HTS SQUIDs, IEEE Trans. Appl. Superconductivity, 2001, vol. 11, no. 1, pp. 1375–1378.

    Article  Google Scholar 

  21. Volkovitsky, A.K., Karshakov, E.V., Moilanen, E.V., and Pavlov, B.V., Integration of Magnetic Gradiometer Correlation-Extremal and Inertial Navigation Systems, Proc. 19th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg, 2012, pp. 182–184.

    Google Scholar 

  22. Karshakov, E.V., Pavlov, B.V., and Tkhorenko, M.Yu., Models and Structure of Airborne Devices to Measure Physical Fields, Proc. All-Russian Conf. on Control Problems, Moscow: Inst. Probl. Upravlen., 2014, pp. 7032–7043.

    Google Scholar 

  23. Lysenko, A.P., Theory and Methods of Magnetic Disturbance Compensation, Geofiz. Priborostr., 1960, no. 7.

  24. Volkovitskii, A.K., Karshakov, E.V., and Kharichkin, M.V., System of Aeromagnetic Survey of Magnetic Field Anomalies, Datchiki Sist., 2007, no. 8, pp. 17–21.

    Google Scholar 

  25. Leliak, P., Identification and Evaluation of Magnetic Field Sources of Magnetic Airborne Detector Eqquipped Aircraft, IRE Trans. Aerospace Navigat. Electronics, 1961, vol. 8, pp. 95–105.

    Article  Google Scholar 

  26. Karshakov, E.V. and Kharichkin, M.V., A Stochastic Estimation Problem at Aeromagnetometer Deviation Compensation, Autom. Remote Control, 2008, vol. 69, no. 7, pp. 1162–1170.

    Article  MathSciNet  MATH  Google Scholar 

  27. Novozhilov, I.V., Fraktsionnyi analiz (Fractional Analysis), Moscow: Mosk. Gos. Univ., 1995.

    Google Scholar 

  28. Bolotin, Yu.V., Golovan, A.A., and Parusnikov, N.A., Uravneniya aerogravimetrii. Algoritmy i rezul’taty ispytanii (Equations of Aerogravimetry. Algorithms and Results of Tests), Moscow: Mosk. Gos. Univ., 2002.

    Google Scholar 

  29. Varavva, V.G., Golovan, A.A., and Parusnikov, N.A., A Stochastic Measure of Observability, in Correction in Navigation Systems and Artificial Satellites Navigation Systems, Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  30. Golovan, A.A. and Parusnikov, N.A., Mathematicheskie osnovy navigatsionnykh sistem. Chast’ 1: Matematicheskie modeli inertsial’noi navigatsii (Mathematical Foundations of Navigation Systems. Part 1: Mathematical Models of Inertial Navigation), Moscow: Mosk. Gos. Univ., 2010, 2nd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karshakov.

Additional information

Original Russian Text © E.V. Karshakov, M.Yu. Tkhorenko, B.V. Pavlov, 2016, published in Problemy Upravleniya, 2016, No. 2, pp. 72–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karshakov, E.V., Tkhorenko, M.Y. & Pavlov, B.V. Aeromagnetic Gradiometry and Its Application to Navigation. Autom Remote Control 79, 897–910 (2018). https://doi.org/10.1134/S0005117918050107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918050107

Keywords

Navigation