Skip to main content
Log in

An Algorithm to Control Nonlinear Systems in Perturbations and Measurement Noise

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

An algorithm was proposed to stabilize nonlinear systems with reduced level of impact of the measurement noise, parametric uncertainty, and external perturbation. Consideration was given to the noise of the measurements of dimensionality coinciding with that of the plant state vector. The parametric uncertainty and external perturbations can occur in any equation of the plant model. Conditions were obtained to calculate algorithm parameters in the form of solvability of the linear matrix inequality. Efficiency of the proposed scheme was illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyak, B.T. and Topunov, M.V., Suppression of Bounded Exogenous Disturbances: Output Feedback, Autom. Remote Control, 2008, vol. 69, no. 5, pp. 801–818.

    Article  MathSciNet  MATH  Google Scholar 

  2. Nikiforov, V.O., Nonlinear Control System with Compensation of the External Deterministic Disturbances, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1997, no. 4, pp. 69–73.

    Google Scholar 

  3. Fedele, G. and Ferrise, A., Biased Sinusoidal Disturbance Compensation with Unknown Frequency, IEEE Trans. Autom. Control, 2013, vol. 58, no. 12, pp. 3207–3212.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. An Analytical Approach to Analysis and Design of the Matrix Systems), Kaluga: Izd. Nauch. Lit. Bochkarevoi, 2006.

    Google Scholar 

  5. Proskurnikov, A.V. and Yakubovich, V.A., Universal Controllers in Problens of Optimal Control with Reference Model under Unknown External Signals, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2012, no. 2, pp. 49–62.

    Google Scholar 

  6. Tsykunov, A.M., Robastnoe upravlenie s kompensatsiei vozmushchenii (Robust Control with Perturbation Compensation), Moscow: Fizmatlit, 2012.

    Google Scholar 

  7. Guo, G., Hill, D.J., and Wang, Y., Nonlinear Output Stabilization Control for Multimachine Power Systems, IEEE Trans. Circuit. Syst. 1, 2000, vol. 47, no. 1, pp. 46–53.

    Article  Google Scholar 

  8. Chen, Y., Liu, F., Mei, S., and Ma, J., Toward Adaptive Robust State Estimation Based on MCC by Using the Generalized Gaussian Density as Kernel Functions, Electr. Power Energy Syst., 2015, vol. 71, pp. 297–304.

    Article  Google Scholar 

  9. Belyaev, A.N., Smolovik, S.V., Fradkov, A.L., and Furtat, I.B., Robust Control of Electrical Generator under Nonstationary Mechanical Power, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2013, no. 5, pp. 78–86.

    MATH  Google Scholar 

  10. Metody robastnogo, neiro-nechetkogo i adaptivnogo upravleniya (Methods of Robust Neuro-Fuzzy and Adaptive Control), Egupov, N.D., Ed., Moscow: MTTU im. N.E. Baumana, 2002.

  11. Baillieul, J., Feedback Coding for Information-Based Control: Operating Near the Data Rate Limit, in Proc. 41 IEEE Conf. Decision Control, ThP02-6, Las Vegas, Nevada, USA, 2002, pp. 3229–3236.

    Google Scholar 

  12. Delchamps, D.F., Extracting State Information from a Quantized Output Record, Syst. Control Lett., 1989, vol. 13, pp. 365–372.

    Article  MATH  Google Scholar 

  13. Furtat, I.B., Fradkov, A.L., and Liberzon, D., Compensation of Disturbances for MIMO Systems with Quantized Output, Automatica, 2015, vol. 60, pp. 239–244.

    Article  MathSciNet  MATH  Google Scholar 

  14. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Design of Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007.

    MATH  Google Scholar 

  15. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh. Tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems under External Perturbations. Technique of Linear Matrix Inequalities), Moscow: Lenand, 2014.

    Google Scholar 

  16. Furtat, I.B., Algorithm of Robust Control of Linear Plants with Vector Inputs-Outputs under Saturated Control Signal, Mekhatronika, Avtomatiz., Upravl., 2016, vol. 17, no. 9, pp. 579–587.

    Article  MathSciNet  Google Scholar 

  17. Fridman, E., A Refined Input Delay Approach to Sampled-data Control, Automatica, 2010, vol. 46, pp. 421–427.

    Article  MathSciNet  MATH  Google Scholar 

  18. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  19. Brammer, K. and Siffling, G., Kalman–Bucy-Filter: Deterministische Beobachtung und stochastische Filterung (Methoden der Regelungs-und Automatisierungstechnik), Wien: Oldenbourg, 1975. Translated under the title Determinirovannoe nablyudenie i stokhasticheskaya fil’tratsiya, Moscow: Nauka, 1982.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Furtat.

Additional information

Original Russian Text © I.B. Furtat, 2018, published in Avtomatika i Telemekhanika, 2018, No. 7, pp. 41–58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtat, I.B. An Algorithm to Control Nonlinear Systems in Perturbations and Measurement Noise. Autom Remote Control 79, 1207–1221 (2018). https://doi.org/10.1134/S0005117918070032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918070032

Keywords

Navigation