Skip to main content
Log in

Synthesis of Self-Checking Combination Devices Based on Allocating Special Groups of Outputs

  • Control in Technical Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a new structure of a self-checking combinational device where, based on the properties of parity and Berger codes, as well as a code with the detection of all double errors in information vectors, the problem of detecting all single faults of logical elements can be solved without transforming the structure of the source device. The properties of binary codes with the detection of all double errors that can be used in constructing the proposed structure are considered. We give an example of constructing a new structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkhomenko, P.P. and Sogomonyan, E.S., Osnovy tekhnicheskoi diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) (Fundamentals of Technical Diagnostics: Optimization of Testing Algorithms, Hardware), Moscow: Energoatomizdat, 1981.

    Google Scholar 

  2. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Dmitriev, V.V., New Structures of the Concurrent Error Detection Systems for Logic Circuits, Autom. Remote Control, 2017, vol. 78, no. 2, pp. 300–312.

    Article  MathSciNet  MATH  Google Scholar 

  3. Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self- Checking Devices and Fault-Tolerant Systems), Moscow: Radio i Svyaz’, 1989.

    Google Scholar 

  4. Busaba, F.Y. and Lala, P.K., Self-Checking Combinational Circuit Design for Single and Unidirectional Multibit Errors, J. Electron. Testing: Theory Appl., 1994, no. 1, pp. 19–28.

    Article  Google Scholar 

  5. Sapozhnikov, V.V., Sapozhnikov, Vl.V, Göessel, M., and Morozov, A.A., A Construction Method for Combinatorial Self-Checking Devices with Detection of All Single Faults, Elektron. Modelir., 1998, vol. 20, no. 6, pp. 70–80.

    Google Scholar 

  6. Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V., and Göessel, M., A New Design Method for Self-Checking Unidirectional Combinational Circuits, J. Electron. Testing: Theory Appl., 1998, vol. 12, no. 1–2, pp. 41–53.

    Google Scholar 

  7. Morosow, A., Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Göessel, M., Self-Checking Combinational Circuits with Unidirectionally Independent Outputs, VLSI Design, 1998, vol. 5, no. 4, pp. 333–345.

    Article  Google Scholar 

  8. Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-Checking Synchronous FSM Network Design with Low Overhead, VLSI Design, 2000, vol. 11, no. 1, pp. 47–58.

    Article  Google Scholar 

  9. Ghosh, S., Basu, S., and Touba, N.A., Synthesis of Low Power CED Circuits Based on Parity Codes, Proc. 23 IEEE VLSI Test Sympos. (VTS’05), 2005, pp. 315–320.

    Google Scholar 

  10. Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, New Jersey: Wiley, 2006.

    Book  MATH  Google Scholar 

  11. Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking, Dordrecht: Springer Science+Business Media, 2008.

    Google Scholar 

  12. Aksenova, G.P., On Functional Diagnostics of Discrete Devices Operating with Imprecise Data, Probl. Upravlen., 2008, no. 5, pp. 62–66.

    Google Scholar 

  13. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On Summation Code Properties in Functional Control Circuits, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1117–1123.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, S.S., Concurrent Error Detection and Correction for Orthogonal Latin Squares Encoders and Syndrome Computation, Int. J. Advanced Res. Comput. Engin. & Technol., 2015, vol. 4, no. 1, pp. 159–175.

    Google Scholar 

  15. Kumar, B.V.S. and Kumar, G.P., VLSI Design of Error Detection and Correction Orthogonal Latin Square Codes, Int. J. Advanced Res. Comput. Engin. & Technol., 2016, vol. 3, no. 10, pp. 2816–2819.

    Google Scholar 

  16. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Conditions for Detecting a Logical Element Fault in a Combination Device under Concurrent Checking Based on Berger’s Code, Autom. Remote Control, 2017, vol. 78, no. 5, pp. 891–901.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamming, R.W. Error Detecting and Correcting Codes, Bell Syst. Technic. J., 1950, vol. 29(2), pp. 147–160.

    Article  MathSciNet  Google Scholar 

  18. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Blyudov, A., Analysis of Error-Detection Possibilities of CED Circuits Based on Hamming and Berger Codes, Proc. 11 IEEE East-West Design & Test Symp. (EWDTS‘2013), Rostov-on-Don, Russia, September 27–30, 2013, pp. 200–207.

    Google Scholar 

  19. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Characteristic Features of Applying Hamming Codes for the Organization of Self-Checking Embedded Control Schemes, Izv. Vyssh. Uchebn. Zaved., Priborostroen., 2018, vol. 61, no. 1, pp. 47–59.

    Article  Google Scholar 

  20. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Dmitriev, V., New Sum Code for Effective Detection of Double Errors in Data Vectors, Proc. 13 IEEE East-West Design & Test Symp. (EWDTS‘2015), Batumi, Georgia, September 26–29, 2015, pp. 154–159.

    Google Scholar 

  21. Dmitriev, V.V., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Sum Codes with Efficient Detection of Twofold Errors for Organization of Concurrent Error Detection Systems of Logical Devices, Autom. Remote Control, 2018, vol. 79, no. 4, pp. 665–678.

    Article  Google Scholar 

  22. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Dmitriev, V., Weighted Sum Code Without Carries—is an Optimum Code with Detection of Any Double Errors in Data Vectors, Proc. 14 IEEE East-West Design & Test Symp. (EWDTS‘2016), Yerevan, Armenia, October 14–17, 2016, pp. 134–141.

    Google Scholar 

  23. Goessel, M., Morozov, A.A., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Study of Combinational Self- Checking Devices with Independent and Monotonic Independent Outputs, Autom. Remote Control, 1997, vol. 58, no. 2, pp. 299–309.

    MATH  Google Scholar 

  24. Kubalík, P. and Kubátová, H., Parity Codes Used for On-Line Testing in FPGA, Acta Polytechnika, 2005, vol. 45, no. 6, pp. 53–59.

    Google Scholar 

  25. Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), New York: IGI Global, 2011.

    Book  Google Scholar 

  26. Borecký, J., Kohlík, M., and Kubátová, H., Parity Driven Reconfigurable Duplex System, Microproces. Microsyst., 2017, vol. 52, pp. 251–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Efanov.

Additional information

Original Russian Text © D.V. Efanov, V.V. Sapozhnikov, Vl.V. Sapozhnikov, 2018, published in Avtomatika i Telemekhanika, 2018, No. 9, pp. 79–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efanov, D.V., Sapozhnikov, V.V. & Sapozhnikov, V.V. Synthesis of Self-Checking Combination Devices Based on Allocating Special Groups of Outputs. Autom Remote Control 79, 1609–1620 (2018). https://doi.org/10.1134/S0005117918090060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918090060

Keywords

Navigation