Skip to main content
Log in

Consensus in Asynchronous Multiagent Systems. III. Constructive Stability and Stabilizability

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We describe certain classes of linear asynchronous multi-agent systems in discrete time for which the stability problem allows for a constructive solution. We also present a general analytic approach to constructing numerical characteristics similar to the generalized spectral radius in stability theory, which would provide an opportunity to analyze the stabilizability of controlled multi-agent systems. This work completes our survey “Consensus in Asynchronous Multi-Agent Systems,” whose first two parts have been published in [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kozyakin, V.S., Kuznetsov, N.A., and Chebotarev, P.Yu., Consensus in Asynchronous Multiagent Systems. I, Autom. Remote Control, 2019, vol. 80, no. 4, pp. 593–623.

    Article  MathSciNet  Google Scholar 

  2. Kozyakin, V.S., Kuznetsov, N.A., and Chebotarev, P.Yu., Consensus in Asynchronous Multiagent Systems. II, Autom. Remote Control, 2019, vol. 80, no. 5, pp. 791–813.

    Article  MATH  Google Scholar 

  3. Kozyakin, V., An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius, Preprint, Moscow: Inst. Inform. Transmis. Probl., 2013. DOI: https://doi.org/10.13140/RG.2.1.4257.5040/1.

    Google Scholar 

  4. Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow: Nauka, 1967.

    MATH  Google Scholar 

  5. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Book  MATH  Google Scholar 

  6. Kozyakin, V.S., Algebraic Unsolvability of Problem of Absolute Stability of Desynchronized Systems, Autom. Remote Control, 1990, vol. 51, no. 6, pp. 754–759.

    MathSciNet  MATH  Google Scholar 

  7. Blondel, V.D. and Tsitsiklis, J.N., When is a Pair of Matrices Mortal?, Inform. Process. Lett., 1997, vol. 63, no. 5, pp. 283–286. DOI: https://doi.org/10.1016/S0020-0190(97)00123-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Tsitsiklis, J.N. and Blondel, V.D., The Lyapunov Exponent and Joint Spectral Radius of Pairs of Matrices Are Hard—When Not Impossible—to Compute and to Approximate, Math. Control Signals Syst., 1997, vol. 10, no. 1, pp. 31–40. DOI: https://doi.org/10.1007/BF01219774

    Article  MathSciNet  MATH  Google Scholar 

  9. Tsitsiklis, J.N. and Blondel, V.D., Lyapunov Exponents of Pairs of Matrices. A Correction: “The Lyapunov Exponent and Joint Spectral Radius of Pairs of Matrices Are Hard—When Not Impossible—to Compute and to Approximate,” Math. Control Signals Syst., 1997, vol. 10, no. 4, pp. 381. DOI: https://doi.org/10.1007/BF01211553

    Article  MathSciNet  MATH  Google Scholar 

  10. Blondel, V.D. and Tsitsiklis, J.N., The Boundedness of All Products of a Pair of Matrices Is Undecidable, Syst. Control Lett., 2000, vol. 41, no. 2, pp. 135–140. DOI: https://doi.org/10.1016/S0167-6911(00)00049-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Jungers, R., The Joint Spectral Radius, vol. 385 of Lecture Notes in Control and Information Sciences, Berlin: Springer-Verlag, 2009. DOI: https://doi.org/10.1007/978-3-540-95980-9

  12. Gripenberg, G., Computing the Joint Spectral Radius, Linear Algebra Appl., 1996, vol. 234, pp. 43–60. DOI: https://doi.org/10.1016/0024-3795(94)00082-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Maesumi, M., Calculating the Spectral Radius of a Set of Matrices, in Wavelet Analysis and Multiresolution Methods (Urbana-Champaign, IL, 1999), New York: Dekker, 2000, vol. 212 of Lecture Notes Pure Appl. Math., pp. 255–272.

    MathSciNet  MATH  Google Scholar 

  14. Blondel, V.D. and Nesterov, Yu., Computationally Efficient Approximations of the Joint Spectral Radius, SIAM J. Matrix Anal. Appl., 2005, vol. 27, no. 1, pp. 256–272 (electronic). DOI: https://doi.org/10.1137/040607009

    Article  MathSciNet  MATH  Google Scholar 

  15. Parrilo, P.A. and Jadbabaie, A., Approximation of the Joint Spectral Radius of a Set of Matrices Using Sum of Squares, Hybrid Systems: Computation and Control, Berlin: Springer, 2007, vol. 4416 of Lecture Notes Comput. Sci., pp. 444–458. DOI: https://doi.org/10.1007/978-3-540-71493-435

    MathSciNet  MATH  Google Scholar 

  16. Guglielmi, N. and Zennaro, M., An Algorithm for Finding Extremal Polytope Norms of Matrix Families, Linear Algebra Appl., 2008, vol. 428, no. 10, pp. 2265–2282. DOI: https://doi.org/10.1016/j.laa.2007.07.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Kozyakin, V., Iterative Building of Barabanov Norms and Computation of the Joint Spectral Radius for Matrix Sets, Discret. Contin. Dyn. Syst. Ser. B, 2010, vol. 14, no. 1, pp. 143–158. DOI: https://doi.org/10.3934/dcdsb.2010.14.143

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang, C.-T. and Blondel, V., Approximating the Joint Spectral Radius Using a Genetic Algorithm Framework, Proc. 18 IFAC World Congr., IFAC, 2011, vol. 18, pp. 1, pp. 8681–8686.

    Google Scholar 

  19. Kozyakin, V., A Relaxation Scheme for Computation of the Joint Spectral Radius of Matrix Sets, J. Difference Equat. Appl., 2011, vol. 17, no. 2, pp. 185–201. DOI: https://doi.org/10.1080/10236198.2010.549008

    Article  MathSciNet  MATH  Google Scholar 

  20. Vankeerberghen, G., Hendrickx, J., Jungers, R., et al., The JSR Toolbox, MATLAB® Central, 2011. https://doi.org/www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox

    MATH  Google Scholar 

  21. Cicone, A. and Protasov, V., Joint Spectral Radius Computation, MATLAB® Central, 2012. https://doi.org/www.mathworks.com/matlabcentral/fileexchange/36460-joint-spectral-radius-computation

    Google Scholar 

  22. Ahmadi, A.A. and Jungers, R.M., Switched Stability of Nonlinear Systems via SOS-Convex Lyapunov Functions and Semidefinite Programming, Proc. 52. IEEE Ann. Conf. Decision. Control (CDC), 2013, pp. 727–732. DOI: https://doi.org/10.1109/CDC.2013.6759968

    Google Scholar 

  23. Bajovic, D., Xavier, J., Moura, J.M.F., and Sinopoli, B., Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability, IEEE Transact. Signal Proc., 2013, vol. 61, no. 10, pp. 2557–2571. DOI: https://doi.org/10.1109/TSP.2013.2248003

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang, C.-T. and Blondel, V.D., An Experimental Study of Approximation Algorithms for the Joint Spectral Radius, Numer. Algorithms, 2013, vol. 64, no. 1, pp. 181–202. DOI: https://doi.org/10.1007/s11075-012-9661-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Guglielmi, N. and Protasov, V., Exact Computation of Joint Spectral Characteristics of Linear Operators, Found. Comput. Math., 2013, vol. 13, no. 1, pp. 37–97. DOI: https://doi.org/10.1007/s10208-012-9121-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Vankeerberghen, G., Hendrickx, J., and Jungers, R.M., JSR: A Toolbox to Compute the Joint Spectral Radius, Proc. 17. Int. Conf. Hybrid Syst.: Comput. Control, HSCC'14, New York: ACM, 2014, pp. 151–156. DOI: https://doi.org/10.1145/2562059.2562124

    Google Scholar 

  27. Chevalier, P.-Y., Hendrickx, J.M., and Jungers, R.M., Efficient Algorithms for the Consensus Decision Problem, SIAM J. Control Optim., 2015, vol. 53, no. 5, pp. 3104–3119. DOI: https://doi.org/10.1137/140988024

    Article  MathSciNet  MATH  Google Scholar 

  28. Protasov, V.Yu., Spectral Simplex Method, Math. Program., 2016, vol. 156, no. 1–2, Ser. A, pp. 485–511. DOI: https://doi.org/10.1007/s10107-015-0905-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Kozyakin, V.S., Constructive Stability and Stabilizability of Positive Linear Discrete-Time Switching Systems, J. Commun. Technol. Electron., 2017, vol. 62, no. 6, pp. 686–693. DOI: https://doi.org/10.1134/S1064226917060110

    Article  Google Scholar 

  30. Kleptsyn, A.F., Kozyakin, V.S., Krasnosel'skii, M.A., and Kuznetsov, N.A., Stability of Desynchronized Systems, Dokl. Akad. Nauk USSR, 1984, vol. 274, no. 5, pp. 1053–1056.

    MathSciNet  MATH  Google Scholar 

  31. Barabanov, N.E., The Lyapunov Indicator of Discrete Inclusions. I–III, Autom. Remote Control, 1988, vol. 49, no. 2, pp. 152–157; no. 3, pp. 283–287; no. 5, pp. 558–565.

    MATH  Google Scholar 

  32. Kozyakin, V.S., Absolute Stability of Systems with Asynchronous Sampled-Data Elements, Autom. Remote Control, 1990, vol. 51, no. 10, pp. 1349–1355.

    MATH  Google Scholar 

  33. Gurvits, L., Stability of Discrete Linear Inclusion, Linear Algebra Appl., 1995, vol. 231, pp. 47–85. DOI: https://doi.org/10.1016/0024-3795(95)90006-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Kozyakin, V., A Short Introduction to Asynchronous Systems, Proc. Sixth Int. Conf. Difference Equat., Boca Raton: CRC, 2004, pp. 153–165.

    Google Scholar 

  35. Shorten, R., Wirth, F., Mason, O., et al., Stability Criteria for Switched and Hybrid Systems, SIAM Rev., 2007, vol. 49, no. 4, pp. 545–592. DOI: https://doi.org/10.1137/05063516X

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, H. and Antsaklis, P.J., Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Trans. Automat. Control, 2009, vol. 54, no. 2, pp. 308–322. DOI: https://doi.org/10.1109/TAC.2008.2012009

    Article  MathSciNet  MATH  Google Scholar 

  37. Fornasini, E. and Valcher, M.E., Stability and Stabilizability Criteria for Discrete-Time Positive Switched Systems, IEEE Trans. Automat. Control, 2012, vol. 57, no. 5, pp. 1208–1221. DOI: https://doi.org/10.1109/TAC.2011.2173416

    Article  MathSciNet  MATH  Google Scholar 

  38. Rota, G.-C. and Strang, G., A Note on the Joint Spectral Radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math, 1960, vol. 22, pp. 379–381.

    Article  MathSciNet  MATH  Google Scholar 

  39. Theys, J., Joint Spectral Radius: Theory and Approximations, PhD Dissertation, Faculté des sciences appliquées, Département d'ingénierie mathématique, Center for Systems Engineering and Applied Mechanics., Université Catholique de Louvain, 2005. https://doi.org/dial.academielouvain.be/vital/access/manager/Repository/boreal:5161

    Google Scholar 

  40. Shen, J. and Hu, J., Stability of Discrete-Time Switched Homogeneous Systems on Cones and Conewise Homogeneous Inclusions, SIAM J. Control Optim., 2012, vol. 50, no. 4, pp. 2216–2253. DOI: https://doi.org/10.1137/110845215

    Article  MathSciNet  MATH  Google Scholar 

  41. Bochi, J. and Morris, I.D., Continuity Properties of the Lower Spectral Radius, Proc. Lond. Math. Soc. (3), 2015, vol. 110, no. 2, pp. 477–509. DOI: https://doi.org/10.1112/plms/pdu058

    Article  MathSciNet  MATH  Google Scholar 

  42. Czornik, A., On the Generalized Spectral Subradius, Linear Algebra Appl., 2005, vol. 407, pp. 242–248. DOI: https://doi.org/10.1016/j.laa.2005.05.006

    Article  MathSciNet  MATH  Google Scholar 

  43. Bousch, T. and Mairesse, J., Asymptotic Height Optimization for Topical IFS, Tetris Heaps, and the Finiteness Conjecture, J. Am. Math. Soc., 2002, vol. 15, no. 1, pp. 77–111 (electronic). DOI: https://doi.org/10.1090/S0894-0347-01-00378-2

    Article  MathSciNet  MATH  Google Scholar 

  44. Blondel, V.D., Theys, J., and Vladimirov, A.A., Switched Systems that are Periodically Stable may be Unstable, Proc. Sympos. MTNS, Notre-Dame, USA: 2002, https://doi.org/www.3.nd.edu/mtns/papers/10181.pdf

    Google Scholar 

  45. Kozyakin, V., A Dynamical Systems Construction of a Counterexample to the Finiteness Conjecture, Proc. 44 IEEE Conf. Decision Control, 2005 and 2005 Eur. Control Conf., CDC-ECC'05, 2005, pp. 2338–2343. DOI: https://doi.org/10.1109/CDC.2005.1582511

    Google Scholar 

  46. Czornik, A. and Jurgaś, P., Falseness of the Finiteness Property of the Spectral Subradius, Int. J. Appl. Math. Comput. Sci., 2007, vol. 17, no. 2, pp. 173–178. DOI: https://doi.org/10.2478/v10006-007-0016-1

    Article  MathSciNet  MATH  Google Scholar 

  47. Blondel, V.D. and Nesterov, Yu., Polynomial-Time Computation of the Joint Spectral Radius for Some Sets of Nonnegative Matrices, SIAM J. Matrix Anal. Appl., 2009, vol. 31, no. 3, pp. 865–876. DOI: https://doi.org/10.1137/080723764

    Article  MathSciNet  MATH  Google Scholar 

  48. Duffin, R.J., Topology of Series-Parallel Networks, J. Math. Anal. Appl., 1965, vol. 10, pp. 303–318. DOI: https://doi.org/10.1016/0022-247X(65)90125-3

    Article  MathSciNet  MATH  Google Scholar 

  49. Eppstein, D., Parallel Recognition of Series-Parallel Graphs, Inform. Comput., 1992, vol. 98, no. 1, pp. 41–55. DOI: https://doi.org/10.1016/0890-5401(92)90041-D

    Article  MathSciNet  MATH  Google Scholar 

  50. Dai, X., Robust Periodic Stability Implies Uniform Exponential Stability of Markovian Jump Linear Systems and Random Linear Ordinary Differential Equations, J. Franklin Inst., 2014, vol. 351, no. 5, pp. 2910–2937. DOI: https://doi.org/10.1016/j.jfranklin.2014.01.010

    Article  MathSciNet  MATH  Google Scholar 

  51. Kozyakin, V., The Berger-Wang Formula for the Markovian Joint Spectral Radius, Linear Algebra Appl., 2014, vol. 448, pp. 315–328. DOI: https://doi.org/10.1016/j.laa.2014.01.022

    Article  MathSciNet  MATH  Google Scholar 

  52. Kozyakin, V., Matrix Products with Constraints on the Sliding Block Relative Frequencies of Different Factors, Linear Algebra Appl., 2014, vol. 457, pp. 244–260. DOI: https://doi.org/10.1016/j.laa.2014.05.016

    Article  MathSciNet  MATH  Google Scholar 

  53. Shih, M.-H., Wu, J.-W., and Pang, C.-T., Asymptotic Stability and Generalized Gelfand Spectral Radius Formula, Linear Algebra Appl., 1997, vol. 252, pp. 61–70. DOI: https://doi.org/10.1016/0024-3795(95)00592-7

    Article  MathSciNet  MATH  Google Scholar 

  54. Daubechies, I. and Lagarias, J.C., Sets of Matrices All Infinite Products of Which Converge, Linear Algebra Appl., 1992, vol. 161, pp. 227–263. DOI: https://doi.org/10.1016/0024-3795(92)90012-Y

    Article  MathSciNet  MATH  Google Scholar 

  55. Daubechies, I. and Lagarias, J.C., Corrigendum/Addendum to: “Sets of Matrices All Infinite Products of Which Converge” [Linear Algebra Appl., vol. 161 (1992), pp. 227-263; MR1142737 (93f:15006)], Linear Algebra Appl., 2001, vol. 327, no. 1–3, pp. 69–83. DOI: https://doi.org/10.1016/S0024-3795(00)00314-1

    Article  MathSciNet  MATH  Google Scholar 

  56. Berger, M.A. and Wang, Y., Bounded Semigroups of Matrices, Linear Algebra Appl., 1992, vol. 166, pp. 21–27. DOI: https://doi.org/10.1016/0024-3795(92)90267-E

    Article  MathSciNet  MATH  Google Scholar 

  57. Katok, A.B. and Khassel'blat, B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem (Introduction to the Modern Theory of Dynamical Systems), Moscow: Faktorial, 1999.

    Google Scholar 

  58. Kitchens, B.P., Symbolic Dynamics, Berlin: Springer-Verlag, 1998. DOI: https://doi.org/10.1007/978-3-642-58822-8

    Book  MATH  Google Scholar 

  59. Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z, 1923, vol. 17, no. 1, pp. 228–249. DOI: https://doi.org/10.1007/BF01504345

    Article  MathSciNet  MATH  Google Scholar 

  60. Polya, G. and Szego, G., Problems and Theorems in Analysis I, New York: Springer-Verlag, 1972. Translated under the title Zadachi i teoremy iz analiza. I, Moscow: Nauka, 1978.

    Book  MATH  Google Scholar 

  61. Elsner, L., The Generalized Spectral-Radius Theorem: An Analytic-Geometric Proof, Linear Algebra Appl., 1995, vol. 220, pp. 151–159, Proc. Workshop “Nonnegat. Matric., Appl. General.” and the Eighth Haifa Matrix Theory Conf. (Haifa, 1993). DOI: https://doi.org/10.1016/0024-3795(93)00320-Y

  62. Bochi, J., Inequalities for Numerical Invariants of Sets of Matrices, Linear Algebra Appl., 2003, vol. 368, pp. 71–81. DOI: https://doi.org/10.1016/S0024-3795(02)00658-4

    Article  MathSciNet  MATH  Google Scholar 

  63. Dai, X., Extremal and Barabanov Semi-Norms of a Semigroup Generated by a Bounded Family of Matrices, J. Math. Anal. Appl., 2011, vol. 379, no. 2, pp. 827–833. DOI: https://doi.org/10.1016/j.jmaa.2010.12.059

    Article  MathSciNet  MATH  Google Scholar 

  64. Protasov, V., Applications of the Joint Spectral Radius to Some Problems of Functional Analysis, Probability and Combinatorics, Proc. 44. IEEE Conf. Decision. Control Eur. Control Conf. 2005, Seville, Spain, December 12–15, 2005, pp. 3025–3030.

    Google Scholar 

  65. Jungers, R.M., Protasov, V., and Blondel, V.D., Efficient Algorithms for Deciding the Type of Growth of Products of Integer Matrices, Linear Algebra Appl., 2008, vol. 428, no. 10, pp. 2296–2311. DOI: https://doi.org/10.1016/j.laa.2007.08.001

    Article  MathSciNet  MATH  Google Scholar 

  66. Guglielmi, N. and Zennaro, M., Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices, Current Challeng. Stabil. Issues Numer. Differ. Equat., Springer, 2014, Lecture Notes. Math, pp. 265–313. DOI: https://doi.org/10.1007/978-3-319-01300-85

    Chapter  Google Scholar 

  67. Dai, X., Huang, Y., and Xiao, M., Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View, SIAM J. Control Optim., 2008, vol. 47, no. 4, pp. 2137–2156. DOI: https://doi.org/10.1137/070699676

    Article  MathSciNet  MATH  Google Scholar 

  68. Dai, X., Huang, Y., and Xiao, M., Periodically Switched Stability Induces Exponential Stability of Discrete-Time Linear Switched Systems in the Sense of Markovian Probabilities, Automatica J. IFAC, 2011, vol. 47, no. 7, pp. 1512–1519. DOI: https://doi.org/10.1016/j.automatica.2011.02.034

    Article  MathSciNet  MATH  Google Scholar 

  69. MacKay, D.J.C., Information Theory, Inference and Learning Algorithms, New York: Cambridge Univer. Press, 2003. https://doi.org/www.inference.phy.cam.ac.uk/itprnn/book.pdf

    MATH  Google Scholar 

  70. Moision, B.E., Orlitsky, A., and Siegel, P.H., Bounds on the Rate of Codes Which Forbid Specified Difference Sequences, Global Telecom. Conf. GLOBECOM '99, Rio de Janeiro, 1999, vol. 1b, pp. 878–882.

    Google Scholar 

  71. Moision, B.E., Orlitsky, A., and Siegel, P.H., On Codes That Avoid Specified Differences, IEEE Trans. Inform. Theory, 2001, vol. 47, no. 1, pp. 433–442. DOI: https://doi.org/10.1109/18.904557

    Article  MathSciNet  MATH  Google Scholar 

  72. Immink, K.A.S., Codes for Mass Data Storage Systems, Eindhoven, The Netherlands: Shannon Foundation Publishers, 2004, 2nd ed. https://doi.org/www.exp-math.uni-essen.de/immink/pdf/codesformassdata2.pdf

    Google Scholar 

  73. Lind, D. and Marcus, B., An Introduction to Symbolic Dynamics and Coding, Cambridge: Cambridge Univ. Press, 1995. DOI: https://doi.org/10.1017/CBO9780511626302

    Book  MATH  Google Scholar 

  74. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Cambridge: Cambridge Univer. Press, 1995, vol. 54 of Encyclop. Math. Appl.

  75. Choi, Y. and Szpankowski, W., Pattern Matching in Constrained Sequences, Proc. IEEE Int. Sympos. Inform. Theory 2007 (ISIT), Nice, France, June 24–29, 2007, pp. 2606–2610. DOI: https://doi.org/10.1109/ISIT.2007.4557611

    Chapter  Google Scholar 

  76. Ferenczi, S. and Monteil, T., Infinite Words with Uniform Frequencies, and Invariant Measures, Combinat., Automat. Number Theory, Cambridge: Cambridge Univ. Press, 2010, vol. 135 of Encyclop. Math. Appl., pp. 373–409. https://doi.org/www.lirmm.fr/monteil/papiers/fichiers/CANT-ch07.pdf

    Article  MathSciNet  MATH  Google Scholar 

  77. Kozyakin, V., Minimax Joint Spectral Radius and Stabilizability of Discrete-Time Linear Switching Control Systems, Discrete Contin. Dyn. Syst. Ser. B, 2018, vol. 22, no. 1531–3492_2017_11_206, p. 20, First online. DOI: https://doi.org/10.3934/dcdsb.2018277

    Google Scholar 

  78. Dai, X., A Gel'fand-Type Spectral-Radius Formula and Stability of Linear Constrained Switching Systems, Linear Algebra Appl., 2012, vol. 436, no. 5, pp. 1099–1113. DOI: https://doi.org/10.1016/j.laa.2011.07.029

    Article  MathSciNet  MATH  Google Scholar 

  79. Jungers, R.M., On Asymptotic Properties of Matrix Semigroups with an Invariant Cone, Linear Algebra Appl., 2012, vol. 437, no. 5, pp. 1205–1214. DOI: https://doi.org/10.1016/j.laa.2012.04.006

    Article  MathSciNet  MATH  Google Scholar 

  80. Dai, X., Huang, Y., and Xiao, M., Pointwise Stability of Descrete-Time Stationary Matrix-Valued Markovian Processes, IEEE Trans. Automat. Control, 2015, vol. 60, no. 7, pp. 1898–1903. DOI: https://doi.org/10.1109/TAC.2014.2361594

    Article  MathSciNet  MATH  Google Scholar 

  81. Jungers, R.M. and Mason, P., On Feedback Stabilization of Linear Switched Systems via Switching Signal Control, SIAM J. Control Optim., 2017, vol. 55, no. 2, pp. 1179–1198. DOI: https://doi.org/10.1137/15M1027802

    Article  MathSciNet  MATH  Google Scholar 

  82. Sun, Z. and Ge, S.S., Switched Linear Systems: Control and Design, Communications and Control Engineering, London: Springer, 2005.

    Book  MATH  Google Scholar 

  83. Stanford, D.P. and Urbano, J.M., Some Convergence Properties of Matrix Sets, SIAM J. Matrix Anal. Appl., 1994, vol. 15, no. 4, pp. 1132–1140. DOI: https://doi.org/10.1137/S0895479892228213

    Article  MathSciNet  MATH  Google Scholar 

  84. Stanford, D.P., Stability for a Multi-Rate Sampled-Data System, SIAM J. Control Optim,, 1979, vol. 17, no. 3, pp. 390–399. DOI: https://doi.org/10.1137/0317029

    Article  MathSciNet  MATH  Google Scholar 

  85. Dai, X., Huang, Y., Liu, J., and Xiao, M., The Finite-Step Realizability of the Joint Spectral Radius of a Pair of d × d Matrices One of Which Being Rank-One, Linear Algebra Appl., 2012, vol. 437, no. 7, pp. 1548–1561. DOI: https://doi.org/10.1016/j.laa.2012.04.053

    Article  MathSciNet  MATH  Google Scholar 

  86. Dai, X., Some Criteria for Spectral Finiteness of a Finite Subset of the Real Matrix Space Rd×d, Linear Algebra Appl., 2013, vol. 438, no. 6, pp. 2717–2727. DOI: https://doi.org/10.1016/j.laa.2012.09.026

    Article  MathSciNet  MATH  Google Scholar 

  87. Asarin, E., Cervelle, J., Degorre, A., et al., Entropy Games and Matrix Multiplication Games, 33rd Sympos. Theoret. Aspect. Comput. Sci., (STACS 2016), Ollinger, N. and Vollmer H., Eds., vol. 47 of LIPIcs, Leibniz Int. Proc. Inform, Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, pp. 11:1–11:14. DOI: https://doi.org/10.4230/LIPIcs.STACS.2016.11

    MathSciNet  MATH  Google Scholar 

  88. Bouyer, P., Markey, N., Randour, M., et al., Average-Energy Games, Acta Inform., 2016, July, pp. 1–37. DOI: https://doi.org/10.1007/s00236-016-0274-1

    Google Scholar 

  89. Kozyakin, V.S., Constructive Stability and Stabilizability for Positive Linear Switching Systems with Discrete Time, Inform. Prots., 2016, vol. 16, no. 2, pp. 194–206. www.jip.ru/2016/194-206-2016.pdf

    Google Scholar 

  90. Kozyakin, V., Minimax Theorem for the Spectral Radius of the Product of Non-Negative Matrices, Linear Multilinear Algebra, 2017, vol. 65, no. 11, pp. 2356–2365. DOI: https://doi.org/10.1080/03081087.2016.1273877

    Article  MathSciNet  MATH  Google Scholar 

  91. Heil, C. and Strang, G., Continuity of the Joint Spectral Radius: Application to Wavelets, Linear algebra for signal processing (Minneapolis, MN, 1992), New York: Springer, 1995, vol. 69 of IMA Vol. Math. Appl., pp. 51–61.

    Article  MathSciNet  MATH  Google Scholar 

  92. Wirth, F., The Generalized Spectral Radius and Extremal Norms, Linear Algebra Appl., 2002, vol. 342, pp. 17–40. DOI: https://doi.org/10.1016/S0024-3795(01)00446-3

    Article  MathSciNet  MATH  Google Scholar 

  93. Kozyakin, V., An Explicit Lipschitz Constant for the Joint Spectral Radius, Linear Algebra Appl., 2010, vol. 433, no. 1, pp. 12–18. DOI: https://doi.org/10.1016/j.laa.2010.01.028

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of the third author was supported by the Russian Science Foundation, project no. 19-19-00673 provided by the Trapeznikov Institute of Control Sciences of the RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Kozyakin, N. A. Kuznetsov or P. Yu. Chebotarev.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 6, pp. 3–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyakin, V.S., Kuznetsov, N.A. & Chebotarev, P.Y. Consensus in Asynchronous Multiagent Systems. III. Constructive Stability and Stabilizability. Autom Remote Control 80, 989–1015 (2019). https://doi.org/10.1134/S0005117919060018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919060018

Keywords

Navigation