Skip to main content
Log in

General Properties of Two-Stage Stochastic Programming Problems with Probabilistic Criteria

  • Stochastic Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Two-stage stochastic programming problems with the probabilistic and quantile criteria in the general statement are considered. Sufficient conditions for the measurability of the loss function and also for the semicontinuity of the criterion functions are given. Sufficient conditions for the existence of optimal strategies are established. The equivalence of the a priori and a posteriori statements of the problems under study is proved. The application of the confidence method, which consists in the transition to a deterministic minimax problem, is described and justified. Sample approximations of the problems are constructed and also conditions under which the optimal strategies in the approximating problems converge to the optimal strategy in the original problem are presented. The results are illustrated by an example of the linear two-step problem. The two-stage problem with the probabilistic criterion is reduced to a mixed-integer problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birge, J.R. and Louveaux, F., Introduction to Stochastic Programming, New York: Springer, 2011.

    Book  MATH  Google Scholar 

  2. Kall, P. and Mayer, J., Stochastic Linear Programming: Models, Theory and Computation, New York: Springer, 2011.

    Book  MATH  Google Scholar 

  3. Pr´ekopa, A., Stochastic Programming, Boston: Kluwer, 1995.

    Book  Google Scholar 

  4. Shapiro, A., Dentcheva, D., and Ruszczy´nski, A., Lectures on Stochastic Programming. Modeling and Theory, Philadelphia: SIAM, 2009.

    Book  Google Scholar 

  5. Wets, R.J.-B., Stochastic Programs with Fixed Recourse: The Equivalent Deterministic Program, SIAM Rev., 1974, vol. 16, no. 3, pp. 309–339.

    Article  MathSciNet  MATH  Google Scholar 

  6. Frauendorfer, K., Stochastic Two-Stage Programming, Berlin—Heidelberg: Springer, 1992.

    Book  MATH  Google Scholar 

  7. Kulkarni, A.A. and Shanbhag, U.V., Recourse-Based Stochastic Nonlinear Programming: Properties and Benders-SQP Algorithms, Comput. Optim. Appl., 2012, vol. 51, no. 1, pp. 77–123.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kibzun, A.I. and Kan, Y.S., Stochastic Programming Problems with Probability and Quantile Functions, Chichester—New York—Brisbane—Toronto—Singapore: Wiley, 1996.

    MATH  Google Scholar 

  9. Kibzun, A.I. and Kan, Y.S., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

    Google Scholar 

  10. Kibzun, A.I. and Naumov, A.V., A Two-Stage Quantile Linear Programming Problem, Autom. Remote Control, 1995, vol. 56, no. 1, part 1, pp. 68–76.

    MATH  Google Scholar 

  11. Schultz, R. and Tiedemann, S., Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse, Math. Program., Ser. B, 2006, vol. 105, pp. 365–386.

    Article  MathSciNet  MATH  Google Scholar 

  12. Norkin, V.I., Kibzun, A.I., and Naumov, A.V., Reducing Two-Stage Probabilistic Optimization Problems with Discrete Distribution of Random Data to Mixed-Integer Programming Problems, Cybernet. Syst. Anal., 2014, vol. 50, no. 5, pp. 679–692.

    Article  MathSciNet  MATH  Google Scholar 

  13. Sen, S., Relaxation for Probabilistically Constrained Programs with Discrete Random Variables, Oper. Res. Lett., 1992, vol. 11, pp. 81–86.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ruszczy´nski, A., Probabilistic Programming with Discrete Distributions and Precedence Constrained Knapsack Polyhedra, Math. Program., 2002, vol. 93, pp. 195–215.

    Article  MathSciNet  Google Scholar 

  15. Luedtke, J., Ahmed, S., and Nemhauser, G., An Interger Programming Approach for Linear Programs with Probabilistic Constraints, Math. Program., 2010, vol. 122, pp. 247–272.

    Article  MathSciNet  MATH  Google Scholar 

  16. Saxena, A., Goyal, V., and Lejeune, M.A., MIP Reformulations of the Probabilistic Set Covering Problem, Math. Program., 2010, vol. 121, pp. 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bogdanov, A.B. and Naumov, A.V., Solution to a Two-step Logistics Problem in a Quantile Statement, Autom. Remote Control, 2006, vol. 67, no. 12, pp. 1893–1899.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kibzun, A.I. and Tarasov, A.N., Stochastic Model of the Electric Power Purchase System on a Railway Segment, Autom. Remote Control, 2018, vol. 79, no. 3, pp. 425–438.

    Article  MathSciNet  MATH  Google Scholar 

  19. Artstein, Z. and Wets, R.J.-B., Consistency of Minimizers and the SLLN for Stochastic Programs, J. Convex Anal., 1996, vol. 2, pp. 1–17.

    MathSciNet  MATH  Google Scholar 

  20. Pagnoncelli, B.K., Ahmed, S., and Shapiro, A., Sample Average ApproximationMethod for Chance Constrained Programming: Theory and Applications, J. Optim. Theory Appl., 2009, vol. 142, pp. 399–416.

    Article  MathSciNet  MATH  Google Scholar 

  21. Campi, M.C. and Garatti, S., A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality, J. Optim. Theory Appl., 2011, vol. 148, pp. 257–280.

    Article  MathSciNet  MATH  Google Scholar 

  22. Higle, J.L. and Sen, S., Statistical Approximations for Stochastic Linear Programming Problems, Ann. Oper. Res., 1999, vol. 85, pp. 173–192.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ivanov, S.V. and Kibzun, A.I., On the Convergence of Sample Approximations for Stochastic Programming Problems with Probabilistic Criteria, Autom. Remote Control, 2018, vol. 79, no. 2, pp. 216–228.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ioffe, A.D. and Tikhomirov, V.M., Theory of Extremal Problems, Amsterdam: North-Holland, 1979.

    Google Scholar 

  25. Rockafellar, R.T. and Wets, R.J.-B., Variational Analysis, Berlin: Springer, 2009.

    MATH  Google Scholar 

  26. Shiryaev, A.N., Probability-1, New York: Springer, 2016.

    Book  MATH  Google Scholar 

  27. Zhenevskaya, I.D. and Naumov, A.V., The Decomposition Method for Two-Stage Stochastic Linear Programming Problems with Quantile Criterion, Autom. Remote Control, 2018, vol. 79, no. 2, pp. 229–240.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kibzun, A.I., Comparison of Two Algorithms for Solving a Two-Stage Bilinear Stochastic Programming Problem with Quantile Criterion, Appl. Stochast. Models Business Industry, 2015, vol. 31, no. 6, pp. 862–874.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ivanov, S.V. and Kibzun, A.I., Sample Average Approximation in a Two-Stage Stochastic Linear Program with Quantile Criterion, Proc. Steklov Inst. Math., 2018, vol. 303, no. 1, pp. 107–115.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project no. 17-07-00203A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Ivanov or A. I. Kibzun.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 6, pp. 70–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.V., Kibzun, A.I. General Properties of Two-Stage Stochastic Programming Problems with Probabilistic Criteria. Autom Remote Control 80, 1041–1057 (2019). https://doi.org/10.1134/S0005117919060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919060043

Keywords