Skip to main content
Log in

Optimization of Bilinear Control Systems Subjected to Exogenous Disturbances. II. Design

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We obtain and discuss new results related to control design for bilinear systems subjected to arbitrary bounded exogenous disturbances. A procedure for the construction of the stabilizability ellipsoid and the domain of stabilizability for bilinear control systems is proposed and its efficiency is proved. This problem is solved both in continuous and discrete time. The main tool is the linear matrix inequality technique. This simple yet general approach is of great potential and can be widely generalized; for instance, to various robust statements of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohler, R.R., Bilinear Control Processes, New York: Academic, 1973.

    MATH  Google Scholar 

  2. Ryan, E. and Buckingham, N., On Asymptotically Stabilizing Feedback Control of Bilinear Systems, IEEE Trans. Autom. Control, 1983, 28, 8, pp. 863–864.

    Article  MATH  Google Scholar 

  3. Chen, L.K., Yang, X., and Mohler, R.R., Stability Analysis of Bilinear Systems, IEEE Trans. Autom. Control, 1991, 36, 11, pp. 1310–1315.

    Article  Google Scholar 

  4. Čelikovský, S., On the Global Linearization of Bilinear Systems, Syst. Control Lett., 1990, 15, 5, pp. 433–439.

    Article  MathSciNet  MATH  Google Scholar 

  5. Čelikovský, S., On the Stabilization of the Homogeneous Bilinear Systems, Syst. Control Lett., 1993, 21, 6, pp. 503–510.

    Article  MathSciNet  MATH  Google Scholar 

  6. Tibken, B., Hofer, E.P., and Sigmund, A., The Ellipsoid Method for Systematic Bilinear Observer Design, Proc. 13th IFAC World Congr., San Francisco, USA, June–July 1996, pp. 377–382.

    Google Scholar 

  7. Korovin, S.K. and Fomichev, V.V., Asymptotic Observers for Some Classes of Bilinear Systems with Linear Input, Dokl. Math., Control Theory, 2004, vol. 398, no 1, pp. 38–43.

    Google Scholar 

  8. Belozyorov, V.Y., Design of Linear Feedback for Bilinear Control Systems, Int. J. Appl. Math. Comput. Sci., 2002, 11, 2, pp. 493–511.

    MathSciNet  MATH  Google Scholar 

  9. Belozyorov, V.Y., On Stability Cones for Quadratic Systems of Differential Equations, J. Dynam. Control Syst., 2005, 11, 3, pp. 329–351.

    Article  MathSciNet  MATH  Google Scholar 

  10. Andrieu, V. and Tarbouriech, S., Global Asymptotic Stabilization for a Class of Bilinear Systems by Hybrid Output Feedback, IEEE Trans. Autom. Control, 2013, 58, 6, pp. 1602–1608.

    Article  MATH  Google Scholar 

  11. Coutinho, D. and de Souza, C.E., Nonlinear State Feedback Design with a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems, IEEE Trans. Circuits Syst. I. Regular Papers, 2012, 59, 2, pp. 360–370.

    Article  MathSciNet  Google Scholar 

  12. Omran, H., Hetel, L., Richard, J.-P., et al., Stability Analysis of Bilinear Systems under Aperiodic Sampled-Data Control, Automatica, 2014, vol. 50, no. 4, pp. 1288–1295.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kung, C.-C., Chen, T.-H., Chen W.-C., et al., Quasi-Sliding Mode Control for a Class of Multivariable Discrete Time Bilinear Systems, Proc. 2012 IEEE Int. Conf. Syst., Man, Cybernet., Seoul, Korea, October 2012, pp. 1878–1883.

    Google Scholar 

  14. Athanasopoulos, N. and Bitsoris, G., Constrained Stabilization of Bilinear Discrete-Time Systems Using Polyhedral Lyapunov Functions, Proc. 17th IFAC World Congr., Seoul, Korea, July 6–11, 2008, pp. 2502–2507.

    Google Scholar 

  15. Athanasopoulos, N. and Bitsoris, G., Stability Analysis and Control of Bilinear Discrete-Time Systems: A Dual Approach, Proc. 18th IFAC World Congr., Milan, Italy, August 28–September 2, 2011, pp. 6443–6448.

    Google Scholar 

  16. Tarbouriech, S., Queinnec, I., Calliero T.R., et al., Control Design for Bilinear Systems with a Guaranteed Region of Stability: An LMI-Based Approach, Proc. 17th Mediterran. Conf. Control Autom., Thessaloniki, Greece, June 2009, pp. 809–814.

    Google Scholar 

  17. Amato, F., Cosentino, C., and Merola, A., Stabilization of Bilinear Systems via Linear State Feedback Control, IEEE Trans. Circuits Syst. II. Express Briefs, 2009, 56, 1, pp. 76–80.

    Article  Google Scholar 

  18. Boyd, S., El Ghaoui, L., Feron, E., et al., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

  19. Polyak, B.T., Khlebnikov, M.V, and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.

    Google Scholar 

  20. Khlebnikov, M.V., Quadratic Stabilization of Bilinear Control Systems, Proc. 14th Eur. Control Conf., Linz, Austria, July 15–17, 2015. IEEE Catalog Number(USB): CFP1590U-USB, pp. 160–164.

    Google Scholar 

  21. Khlebnikov, M.V., Quadratic Stabilization of Bilinear Control Systems, Autom. Remote Control, 2016, vol. 77, no. 6, pp. 980–991.

    Article  MathSciNet  MATH  Google Scholar 

  22. Khlebnikov, M.V., Quadratic Stabilization of Discrete-Time Bilinear Control Systems, Proc. 14th Eur. Control Conf., Limassol, Cyprus, June 12–15, 2018, IEEE Catalog Number(USB): CFP1890U-USB, pp. 201–205.

    Google Scholar 

  23. Bulgakov, B.V., On Accumulation of Perturbations in the Linear Oscillatory Systems with Constant Parameters, Dokl. Akad. Nauk SSSR, 1946, 5, 5, pp. 339–342.

    Google Scholar 

  24. Gnoenskii, L.S., Bulgakov’s Problem of Accumulation of Perturbations, in Zadacha Bulgakova o maksimal’nom otklonenii i ee primenenie (Maximum Deviation Problem by Bulgakov and Its Applications), Aleksandrov, V.V., Ed., Moscow: Mosk. Gos. Univ., 1993, pp. 7–29.

    Google Scholar 

  25. Zhermolenko, V.N., Maximum Deviation of Oscillating System of the Second Order with External and Parametric Disturbances, J. Comput. Syst. Sci. Int., 2007, 46, 3, pp. 407–412.

    Article  MathSciNet  MATH  Google Scholar 

  26. Khlebnikov, M.V., Optimization of Bilinear Control Systems Subjected to Exogenous Disturbances: I. Analysis, Autom. Remote Control, 2019, vol. 80, no. 2, pp. 234–249.

    Article  Google Scholar 

  27. Hofer, E.P., Nonlinear and Bilinear Models for Chemical Reactor Control, Math. Model., 1987, vol. 8, pp. 406–411.

    Article  Google Scholar 

  28. Kang, D., Won, S., and Jang, Y.J., Guaranteed Cost Control for Bilinear Systems by Static Output Feedback, Appl. Math. Comput., 2013, 219, 14, pp. 7398–7405.

    MathSciNet  MATH  Google Scholar 

  29. Grant, M. and Boyd, S., CVX: Matlab Software for Disciplined Convex Programming, version 2.0 beta. http://cvxr.com/cvx, September 2013.

    Google Scholar 

  30. Grant, M. and Boyd, S., Graph Implementations for Nonsmooth Convex Programs, in Recent Advances in Learning and Control (A tribute to M. Vidyasagar), Blondel, V., Boyd, S., and Kimura, H., Eds, Springer, 2008, pp. 95–110. http://stanford.edu/~boyd/graph-dcp.html

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research, project no. 18-08-00140. The author would like to thank B.T. Polyak for his interest in this work, fruitful discussions, and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Khlebnikov.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 8, pp. 29–43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikov, M.V. Optimization of Bilinear Control Systems Subjected to Exogenous Disturbances. II. Design. Autom Remote Control 80, 1390–1402 (2019). https://doi.org/10.1134/S0005117919080022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919080022

Keywords

Navigation