Skip to main content
Log in

Divergent Stability Conditions of Dynamic Systems

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A new method for analyzing the stability of dynamic systems using the properties of the flow and divergence of the phase vector is proposed. A relation between Lyapunov’s function method and this method is established. Based on the results obtained below, a design procedure of state feedback control laws for stabilizing dynamic systems is developed. The control law design is reduced to solving a differential inequality with respect to the control function desired. Examples illustrating the applicability of the new and existing methods are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Control Systems Design), Moscow: Vysshaya Shkola, 2003.

    Google Scholar 

  2. Lyapunov, A.M., Obshchaya zadacha ob ustoichivosti dvizheniya (General Problem on the Stability of Motion), Moscow: GITTL, 1950.

    Google Scholar 

  3. Chetaev, N.G., Ustoichivost’ dvizheniya (Stability of Motion), Moscow, 1955.

  4. Letov, A.M., Ustoichivost’ nelineinykh reguliruemykh sistem (Stability of Nonlinear Controllable Systems), Moscow: Fizmatgiz, 1962.

    Google Scholar 

  5. Malkin, I., Teoriya ustoichivosti dvizheniya (Theory of Motion Stability), Moscow: Nauka, 1966.

    Google Scholar 

  6. Zubov, V.I., Ustoichivost’ dvizheniya. Metody Lyapunova i ikh primenenie (Stability of Motion. Lyapunov’s Methods and Their Application), Moscow: Vysshaya Shkola, 1984.

    Google Scholar 

  7. Rumyantsev, V.V. and Oziraner, A.S., Ustoichivost’ i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh (Stability and Stabilization with Respect to Part of Variables), Moscow: Nauka, 1987.

    MATH  Google Scholar 

  8. Yuan, R., Ma, Y.-A., Yuan, B., and Ao, P., Lyapunov Function as Potential Function: A Dynamical Equivalence, Chin. Phys. B, 2014, vol. 23, no. 1, p. 010505.

    Article  Google Scholar 

  9. Bikdash, M.U. and Layton, R.A., An Energy-Based Lyapunov Function for Physical Systems, IFAC Proc., 2000, vol. 33, no. 2, pp. 81–86.

    Article  Google Scholar 

  10. Willems, J.C., Dissipative Dynamical Systems. Part I: General Theory. Part II: Linear Systems with Quadratic Supply Rates, Arch. Rational Mech. Anal., 1972, vol. 45, no. 5, pp. 321–393.

    Article  MathSciNet  Google Scholar 

  11. Zaremba, S.K., Divergence of Vector Fields and Differential Equations, Am. J. Math., 1954, vol. LXXV, pp. 220–234.

    Article  MathSciNet  Google Scholar 

  12. Fronteau, J., Le théorèm de Liouville et le problèm général de la stabilité, Genève: CERN, 1965.

  13. Brauchli, H.I., Index, Dergenz und Stabilität in Autonomen equations, Zürich: Abhandlung Verlag, 1968.

    MATH  Google Scholar 

  14. Shestakov, A.A. and Stepanov, A.N., Index and Divergent Marks of Stability for a Singular Point of an Autonomous System of Differential Equations, Differ. Uravn., 1979, vol. 15, no. 4, pp. 650–661.

    Google Scholar 

  15. Masina, O.N. and Druzhinina, O.V., Modelirovanie i analiz ustoichivosti nekotorykh klassov sistem upravleniya (Modeling and Analysis of Some Classes of Control Systems), Moscow: Vychisl. Tsentr Ross. Akad. Nauk, 2011.

    Google Scholar 

  16. Druzhinina, O.V., Indeks, divergentsiya i funktsii Lyapunova v kachestvennoi teorii dinamicheskikh sistem (Index, Divergence and Lyapunov Functions in Qualitative Theory of Dynamic Systems), Moscow: URSS, 2013.

    Google Scholar 

  17. Rantzer, A. and Parrilo, P.A., On Convexity in Stabilization of Nonlinear Systems, Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, 2000, pp. 2942–2946.

  18. Rantzer, A., A Dual to Lyapunov’s Stability Theorem, Syst. Control Lett., 2001, vol. 42, pp. 161–168.

    Article  MathSciNet  Google Scholar 

  19. Zhukov, V.P., On One Method for Qualitative Study of Nonlinear System Stability, Autom. Remote Control, 1978, vol. 39, no. 6, pp. 785–788.

    MATH  Google Scholar 

  20. Zhukov, V.P., On the Method of Sources for Studying the Stability of Nonlinear Systems, Autom. Remote Control, 1979, vol. 40, no. 3, pp. 330–335.

    MATH  Google Scholar 

  21. Zhukov, V.P., Necessary and Sufficient Conditions for Instability of Nonlinear Autonomous Dynamic Systems, Autom. Remote Control, 1990, vol. 51, no. 12, pp. 1652–1657.

    MATH  Google Scholar 

  22. Krasnosel’skii, M.A., Perov, A.I., Povolotskii, A.I., and Zabreiko, P.P., Vektornye polya na ploskosti (Vector Fields on the Plane), Moscow: Fizmatlit, 1963.

    Google Scholar 

  23. Zhukov, V.P., On the Divergence Conditions for the Asymptotic Stability of Second-Order Nonlinear Dynamical Systems, Autom. Remote Control, 1999, vol. 60, no. 7, pp. 934–940.

    MathSciNet  MATH  Google Scholar 

  24. Monzon, P., On Necessary Conditions for Almost Global Stability, IEEE Trans. Autom. Control, 2003, vol. 48, no. 4, pp. 631–634.

    Article  MathSciNet  Google Scholar 

  25. Loizou, S.G. and Jadbabaie, A., Density Functions for Navigation-Function-Based Systems, IEEE Trans. Autom. Control, 2008, vol. 53, no. 2, pp. 612–617.

    Article  MathSciNet  Google Scholar 

  26. Castañeda, Á. and Robledo, G., Differentiability of Palmer’s Linearization Theorem and Converse Result for Density Functions, J. Diff. Equat., 2015, vol. 259, no. 9, pp. 4634–4650.

    Article  MathSciNet  Google Scholar 

  27. Karabacak, Ö., Wisniewski, R., and Leth, J., On the Almost Global Stability of Invariant Sets, Proc. 2018 Eur. Control Conf. (ECC 2018), Limassol, Cyprus, 2018, pp. 1648–1653.

  28. Furtat, I.B., Stability Analysis of Dynamic Systems Using the Properties of Flow of the Phase Vector through a Closed Convex Surface, Nauchn.-Tekh. Vestn. Inform. Tekhn. Mekh. Opt., 2013, vol. 83, no. 1, pp. 23–27.

    Google Scholar 

  29. Khalil, H.K., Nonlinear Systems, Upper Saddle River: Prentice Hall, 2002, 3 ed. Translated under the title Nelineinye sistemy, Moscow-Izhevsk: Inst. Komp. Issled., 2009.

    MATH  Google Scholar 

  30. Polyak, B.T. and Topunov, M.V., Suppression of Bounded Exogenous Disturbances: Output Feedback, Autom. Remote Control, 2008, vol. 69, no. 5, pp. 801–818.

    Article  MathSciNet  Google Scholar 

  31. Fradkov, A.L., A Scheme of Speed Gradient and Its Application in Problems of Adaptive Control, Autom. Remote Control, 1980, vol. 40, no. 9, pp. 1333–1342.

    MATH  Google Scholar 

Download references

Acknowledgments

The results of Section 2 were obtained under support of the Russian Foundation for Basic Research in IPME RAS, project no. 17-08-01266. The results of Section 3 were obtained under support of the Russian Science Foundation in IPME RAS, project no. 18-79-10104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Furtat.

Additional information

This paper was recommended for publication by L.B. Rapoport, a member of the Editorial Board

Russian Text © The Author(s), 2020, published in Avtomatika i Telemekhanika, 2020, No. 2, pp. 62—75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtat, I.B. Divergent Stability Conditions of Dynamic Systems. Autom Remote Control 81, 247–257 (2020). https://doi.org/10.1134/S0005117920020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920020058

Keywords

Navigation