Skip to main content

Advertisement

Log in

About One Differential Game Model with Dynamic Updating

  • mathematical game theory and applications
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Differential game model of limited resource extraction with dynamic updating is studied in the paper. The class of games with dynamic updating is new in the theory of differential games. Cooperative setting of limited resource extraction with dynamic updating is considered. Optimal strategies, cooperative payoff, characteristic function and allocation rule for cooperative payoff between the players are derived in an explicit form. As an optimality principle or cooperative solution Shapley value is used. Results of numerical simulation in the Python environment are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kleimenov, A. F. Neantagonisticheskie pozitsionnye differentsialanye igry (Nonantagonistic Positional Differential Games). (Nauka, Yekaterinburg, 1993).

    Google Scholar 

  2. Kleimenov, A. F. On Solutions in a Nonantagonistic Positional Differential Game. J. Appl. Math. Mech. 61(no. 5), 717–723 (1997).

    Article  MathSciNet  Google Scholar 

  3. Kleimenov, A. F. On a Cooperative Theory of Coalition-Free Positional Differential Games. Dokl. Math. 41(no. 3), 409–413 (1990).

    MathSciNet  MATH  Google Scholar 

  4. Kleimenov, A. F. Cooperative Solutions in a Many-Person Positional Differential Game with Continuous Payment Functions. J. Appl. Math. Mech. 54(no. 3), 321–325 (1990).

    Article  MathSciNet  Google Scholar 

  5. Kononenko, A. F. On Equilibrium Positional Strategies in Nonantagonistic Differential Games. Dokl. Akad. Nauk SSSR 231(no. 2), 285–288 (1976).

    MathSciNet  MATH  Google Scholar 

  6. Krasovskii, N. N. Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo resulatata (Control of a Dynamical System. Minimum Guaranteed Result). (Nauka, Moscow, 1985).

    Google Scholar 

  7. Petrosyan, L. A. Stability of the Solutions of Differential Games with Several Players. Vestn. Leningrad. Univ., Ser. 1: Mat., Mekh., Astronom. no. 4, 46–52 (1977).

    MathSciNet  Google Scholar 

  8. Petrosyan, L. A. Strong Time-Consistent Differential Optimality Principles. Vestn. Leningrad. Univ., Ser. 1: Mat., Mekh., Astronom. no. 4, 35–40 (1993).

    Google Scholar 

  9. Petrosyan, L. A. & Danilov, N. N. Stable Solutions in Nonantagonistic Differential Games with Transferable Payoffs. Vestn. Leningrad. Univ., Ser. 1: Mat., Mekh., Astronom. no. 1, 52–79 (1979).

    MATH  Google Scholar 

  10. Petrosyan, L. & Danilov, N. N. Kooperativnye differentsialanye igry i ikh prilozheniya (Cooperative Differential Games and Their Applications). (Tomsk. Gos. Univ., Tomsk, 1985).

    MATH  Google Scholar 

  11. Petrosyan, L. A. & Murzov, N. V. Game-theoretic Problems of Mechanics. Litovsk. Mat. Sb. no. 3, 423–433 (1966).

    MathSciNet  Google Scholar 

  12. Petrosyan, L. A. & Tomskii, G. V. Dinamicheskie igry i ikh prilozheniya (Dynamic Games and Their Applications). (Leningrad. Gos. Univ., Leningrad, 1982).

    Google Scholar 

  13. Pontryagin, L. S. On the Theory of Differential Games. Usp. Mat. Nauk 21(no. 4(130)), 219–274 (1966).

    MathSciNet  MATH  Google Scholar 

  14. Chistyakov, S. V. On Coalition-Free Differential Games. Dokl. Akad. Nauk SSSR 259(no. 5), 1052–1055 (1981).

    MathSciNet  MATH  Google Scholar 

  15. Shevkoplyas, E.V.The Hamilton–Jacobi–Bellman Eq. for a Class of Differential Games with Random Duration, Autom. Remote Control, vol. 75, no. 5, pp. 959–970.

  16. Basar, T. & Olsder, G. J. Dynamic Noncooperative Game Theory. (Academic, London, 1995).

    MATH  Google Scholar 

  17. Bellman, R. Dynamic Programming. (Princeton Univ. Press, Princeton, 1957).

    MATH  Google Scholar 

  18. Bercovitz, L.D.A Variational Approach to Differential Games, in Advances in Game Theory, Dresher, M., Shapley, L.S., and Tucker, A., Eds., Annals of Mathematics Studies, vol. 52, Princeton: Princeton Univ. Press, 1964, pp. 127–175.

  19. Dockner, E., Jorgensen, S. & van Long, N. et al. Differential Games in Economics and Management Science. (Cambridge Univ. Press, Cambridge, 2001).

    MATH  Google Scholar 

  20. Fleming, W.H.The Convergence Problem for Differential Games, in Advances in Game Theory, Dresher, M., Shapley, L.S., and Tucker, A., Eds., Annals of Mathematics Studies, vol. 52, Princeton: Princeton Univ. Press, 1964, pp. 175–195.

  21. Gromova, E.V. and Petrosian, O.L.Control of Information Horizon for Cooperative Differential Game of Pollution Control, 2016 Int. Conf. Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conf.), 2016.

  22. Haurie, A. A Note on Nonzero-Sum Differential Games with Bargaining Solutions. J. Optimiz. Theory Appl. 18(no. 1), 31–39 (1976).

    Article  MathSciNet  Google Scholar 

  23. Petrosian, O. Looking Forward Approach in Cooperative Differential Games. Int. Game Theory Rev. no. 18, 1–14 (2016).

    MathSciNet  MATH  Google Scholar 

  24. Petrosian, O. Looking Forward Approach in Cooperative Differential Games with Infinite-Horizon. Vest. S.-Petersburg. Univ., Ser. 10, Prikl. Mat. Inform. Prots. Upr. no. 4, 18–30 (2016).

    MathSciNet  MATH  Google Scholar 

  25. Petrosian, O. & Barabanov, A. Looking Forward Approach in Cooperative Differential Games with Uncertain-Stochastic Dynamics. J. Optimiz. Theory Appl. 172, 328–347 (2017).

    Article  MathSciNet  Google Scholar 

  26. Petrosian, O., Nastych, M., and Volf, D.Differential Game of Oil Market with Moving Informational Horizon and Non-Transferable Utility, Proc. CNSA—2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the Memory of V.F. Demyanov), St. Petersburg, Russia, 22–27 May 2017.

  27. Petrosian, O., Nastych, M., and Volf, D., Non-cooperative Differential Game Model of Oil Market with Looking Forward Approach, in Frontiers of Dynamic Games, Game Theory and Management, St. Petersburg, 2017, Petrosyan, L.A., Mazalov, V.V., and Zenkevich, N., Eds., Basel: Birkhauser, 2018, pp. 189–202.

  28. Shevkoplyas, E. Optimal Solutions in Differential Games with Random Duration. J. Math. Sci. 199(no. 6), 715–722 (2014).

    Article  MathSciNet  Google Scholar 

  29. Yeung, D. & Petrosian, O. Infinite Horizon Dynamic Games: A New Approach via Information Updating. Int. Game Theory Rev. 19, 1–23 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrosian, O., Tikhomirov, D., Kuchkarov, I. et al. About One Differential Game Model with Dynamic Updating. Autom Remote Control 81, 1733–1750 (2020). https://doi.org/10.1134/S0005117920090131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920090131

Keywords