Skip to main content
Log in

Optimization of a Recursive Conveyor by Reduction to a Constraint Satisfaction Problem

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the recursive conveyor schedule optimization problem. To this end, we introduce the definition of a conveyor described by a connected acyclic graph, in which each vertex is an operation or a control function associated with the corresponding recursive function from a certain finite set. Each recursive function defines a precedence relation for a conveyor operation. The solution of the problem of minimizing the time of order fulfillment by a conveyor on a finite set of renewable resources is considered. The solution is carried out by reduction to the constraint satisfaction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Lazarev, A.A. and Gafarov, E.R., Teoriya raspisanii. Zadachi i algoritmy (Scheduling Theory. Problems and Algorithms), Moscow: Izd. Mosk. Gos. Univ., 2011.

    Google Scholar 

  2. Rekiek, B., Dolgui, A., Delchambre, A., and Bratcu, A., State of art of optimization methods for assembly line design, Annu. Rev. Control, 2002, vol. 26, pp. 163–174.

    Article  Google Scholar 

  3. Ghosh, S. and Gagnon, R.J., A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems, Int. J. Product. Res., 1989, vol. 26, no. 4, pp. 637–0670.

    Article  Google Scholar 

  4. Helgeson, W.B., Salveson, M.E., and Smith, W.W., How to balance an assembly line, Technical Report, Carr Press., 1954, New Caraan, Conn.

  5. Bowman, E.H., Assembly line balancing by linear programming, Oper. Res., 1960, no. 8(3), pp. 3850–389.

  6. Salveson, M.E., The assembly line balancing problem, J. Ind. Eng., 1955, no. 6, pp. 18–25.

  7. Neumann, K., Schwindt, C., and Zimmermann, J., Recent results on resource-constrained project scheduling with time windows: Models, solution methods, and applications, Cent. Eur. J. Oper. Res., 2002, vol. 10, no. 2, pp. 113–148.

    MathSciNet  MATH  Google Scholar 

  8. Drexl, A. and Kimms, A., Optimization guided lower and upper bounds for the resource investment problem, J. Oper. Res. Soc., 2001, vol. 52, no. 3, pp. 340–351.

    Article  Google Scholar 

  9. Ranjbar, M., Kianfar, F., and Shadrokh, S., Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm, Appl. Math. Comput., 2008, vol. 196, no. 2, pp. 879–888.

    MathSciNet  MATH  Google Scholar 

  10. Yamashita, D.S., Armentano, V.A., and Laguna, M., Robust optimization models for project scheduling with resource availability cost, J. Sched., 2007, vol. 10, no. 1, pp. 67–76.

    Article  MathSciNet  Google Scholar 

  11. Shcherbina, O.A., Constraint satisfaction and constraint programming, Intell. Sist., 2011, vol. 15, no. 1–4, pp. 53–170.

    MathSciNet  Google Scholar 

  12. Apt, K.R., Principles of Constraint Programming, New York: Cambridge Univ. Press, 2003.

    Book  Google Scholar 

  13. Narin’yani, A.S., Sedreeva, G.O., Sedreev, S.V., and Frolov, S.A., TimeEX/Windows—a new generation of underdetermined scheduling technology, in Problemy predstavleniya i obrabotki ne polnost’yu opredelennykh znanii (Problems of Representation and Processing of Incompletely Defined Knowledge), Shvetsov, I.E., Ed., Moskva–Novosibirsk, 1996, pp. 101–116.

  14. Kupriyanov, B.V., Recursive conveyor processes—basic properties and characteristics, Ekon. Stat. Inf. Vestn. UMO, 2015, no. 1, pp. 163–170.

  15. Kupriyanov, B.V., Application of a model of conveyor processes of recursive type for solving applied problems, Ekon. Stat. Inf. Vestnik UMO, 2014, no. 5, pp. 170–179.

  16. Kupriyanov, B.V., Method of Efficient Analysis of the Recursive Conveyor Process Models, Autom. Remote Control, 2017, vol. 78, no. 3, pp. 435–449.

    Article  MathSciNet  Google Scholar 

  17. Ore, O., Theory of Graphs, Providence, Rhode Island: Am. Math. Soc., 1962. Translated under the title: Teoriya grafov, Moscow: Nauka, 1980.

    Book  Google Scholar 

  18. Mackworth, A.K., Consistency in networks of relations, Artif. Intell., 1977, vol. 8, no. 1, pp. 99–118.

    Article  MathSciNet  Google Scholar 

  19. Dechter, R. and Pearl, J., Tree clustering for constraint networks, Artif. Intell., 1989, vol. 38, no. 3, pp. 353–366.

    Article  MathSciNet  Google Scholar 

  20. Freuder, E.C., Backtrack-free and backtrack-bounded search, in Search inArtificial Intelligence, Kanal, L. and Kumar, V., Eds., Heidelberg: Springer-Verlag, 1988, pp. 343–369.

  21. Jeavons, P.G., Cohen, D.A., and Gyssens, M., Closure properties of constraints, J. ACM, 1997, vol. 44, pp. 527–548.

    Article  MathSciNet  Google Scholar 

  22. Kupriyanov, B.V., Estimation and optimization of the efficiency of a recursive conveyor, Autom. Remote Control, 2020, vol. 81, pp. 775–790.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-58-S52006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. V. Kupriyanov or A. A. Lazarev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupriyanov, B.V., Lazarev, A.A. Optimization of a Recursive Conveyor by Reduction to a Constraint Satisfaction Problem. Autom Remote Control 82, 1892–1906 (2021). https://doi.org/10.1134/S0005117921110059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921110059

Keywords

Navigation