Skip to main content
Log in

Singularly Perturbed Problems with Multi-Tempo Fast Variables

  • SURVEY ARTICLES
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The article contains a survey of publications studying problems characterized by the presence of fast variables with various rates of change (time scales). We consider the passage to the limit from the solution of a perturbed problem to the solution of a degenerate one, asymptotic solutions of initial and boundary value problems, stability and controllability, asymptotic solutions of optimal control problems, and problems with “hidden” multi-tempo variables. In addition, problems with control constraints, game problems, and stochastic systems are given. The last section presents practical problems with multi-tempo fast motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Vasil’eva, A.B. and Butuzov, V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmushchennykh uravnenii (Asymptotic Expansions of Solutions to Singularly Perturbed Equations), Moscow: Nauka, 1973.

  2. Voropaeva, N.V. and Sobolev, V.A., Geometricheskaya dekompozitsiya singulyarno vozmushchennykh sistem (Geometric Decomposition of Singularly Perturbed Systems), Moscow: Fizmatlit, 2009.

    Google Scholar 

  3. Doolan, E.P., Miller, J.J.H., and Schilders, W.H.A., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Dublin: Boole Press, 1980. Translated under the title: Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Moscow: Mir, 1983.

    MATH  Google Scholar 

  4. Dmitriev, M.G. and Klishevich, A.M., Iterative methods for solving singularly perturbed boundary value problems of conditionally stable type, USSR Comput. Math. Math. Phys., 1987, vol. 27, no. 6, pp. 137–144.

    Article  MathSciNet  MATH  Google Scholar 

  5. Vasil’eva, A.B., Asymptotic behaviour of solutions to certain problems involving non-linear differential equations containing a small parameter multiplying the highest derivatives, Russ. Math. Surv., 1963, vol. 18, no. 3, pp. 13–84.

    Article  MATH  Google Scholar 

  6. Kokotovic, P.V., O’Malley, R.E., Jr., and Sannuti, P., Singular perturbations and order reduction in control theory—An overview, Automatica, 1976, vol. 12, pp. 123–132.

  7. Vasil’eva, A.B. and Dmitriev, M.G., Singular perturbations in optimal control problems, J. Sov. Math., 1986, vol. 34, pp. 1579–1629. https://doi.org/10.1007/BF01262406

    Article  MATH  Google Scholar 

  8. Kurina, G.A. and Dolgopolova, E.Yu., Singulyarnye vozmushcheniya v zadachakh upravleniya. Bibliograficheskii ukazatel’ (1982–2002) (Singular Perturbations in Control Problems. Bibliographic Index (1982–2002)), Voronezh: VGLTA, 2004.

    Google Scholar 

  9. Dmitriev, M.G. and Kurina, G.A., Singular perturbations in control problems, Autom. Remote Control, 2006, vol. 67, no. 1, pp. 1–43. https://doi.org/10.1134/S0005117906010012

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Y., Naidu, D.S., Cai, C., and Zou, Y., Singular perturbations and time scales in control theories and applications: An overview 2002–2012, Int. J. Inf. Syst. Sci., 2014, vol. 9, no. 1, pp. 1–36.

    Google Scholar 

  11. Kurina, G.A., Dmitriev, M.G., and Naidu, D.S., Discrete singularly perturbed control problems (A survey), Dyn. Contin. Discrete Impuls. Syst. Ser. B: Appl. Algorithms, 2017, vol. 24, pp. 335–370. https://www.semanticscholar.org/paper/Discrete-singularlyperturbed- control-problems- (A-Kurina-Dmitriev/f4a005e6d3045c169ff54df3ffcc56598b271233.

  12. Boyarintsev, Yu.E., Regulyarnye i singulyarnye sistemy lineinykh obyknovennykh differentsial’nykh uravnenii (Regular and Singular Systems of Linear Ordinary Differential Equations), Novosibirsk: Nauka, Sib. Otd., 1980.

    MATH  Google Scholar 

  13. Chistyakov, V.F. and Shcheglova, A.A., Izbrannye glavy teorii algebro-differentsial’nykh sistem (Selected Chapters in the Theory of Algebraic-Differential Systems), Novosibirsk: Nauka, 2003.

    MATH  Google Scholar 

  14. Kunkel, P. and Mehrmann, V., Differential-Algebraic Equations Analysis and Numerical Solution, Zürich: EMS Publ. House, 2006. https://doi.org/10.4171/017

  15. Duan, G.-R., Analysis and Design of Descriptor Linear Systems, New York–Dordrecht–Heidelberg–London: Springer, 2010. https://doi.org/10.1007/978-1-4419-6397-0

  16. Lamour, R., März, R., and Tischendorf, C., Differential-Algebraic Equations: A Projector Based Analysis, Berlin–Heidelberg: Springer-Verlag, 2013.https://doi.org/10.1007/978-3-642-27555-5

  17. Kurina, G.A., Singular perturbations of control problems with equation of state not solved for the derivative (A survey), J. Comput. Syst. Sci. Int., 1993, vol. 31, no. 6, pp. 17–45.

    MathSciNet  MATH  Google Scholar 

  18. Abed, E.H., On multiparameter singularly perturbed discrete-time systems, Proc. 26th IEEE Conf. Decis. Control (Los Angeles, California, USA, 1987), pp. 2104–2105. https://doi.org/10.1109/CDC.1987.272925. https://ieeexplore.ieee.org/abstract/document/4049669.

  19. Vuitovich, M., Method of differentiation with respect to a parameter in solving nonlinear equations, in Nelineinaya dinamika i upravlenie. Vyp. 5 (Nonlinear Dynamics and Control. Iss. 5), Moscow: Fizmatlit, 2007, pp. 213–218.

  20. Khoroshun, A.S., Stabilization of the upper equilibrium position of a pendulum by spinning an inertial flywheel, Int. Appl. Mech., 2016, vol. 52, no. 5, pp. 547–556. https://doi.org/10.1007/s10778-016-0775-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Khoroshun, A.S., Stabilization of translation by an eccentric flywheel, Int. Appl. Mech., 2018, vol. 54, no. 5, pp. 600–610. https://doi.org/10.1007/s10778-018-0914-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Kokotovic, P.V., Subsystems, time scales and multimodeling, IFAC Proc. Vols., 1980, vol. 13, no. 6, pp. xxvii–xxxiii. https://doi.org/10.1016/S1474-6670(17)64778-5

    Article  Google Scholar 

  23. Saksena, V.R., O’Reilly, J., and Kokotovic, P.V., Singular perturbations and time-scale methods in control theory: Survey 1976–1983, Automatica, 1984, vol. 20, no. 3, pp. 273–293. https://doi.org/10.1016/0005-1098(84)90044-X

    Article  MathSciNet  MATH  Google Scholar 

  24. Mukaidani, H. and Dragan, V., Control of deterministic and stochastic systems with several small parameters—A survey, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2009, vol. 1, no. 1, pp. 112–158.

    MathSciNet  MATH  Google Scholar 

  25. Vasil’eva, A.B., On differential equations containing small parameters, Mat. Sb., 1952, vol. 31(73), no. 3, pp. 587–644.

    MathSciNet  Google Scholar 

  26. Tikhonov, A.N., On systems of differential equations containing parameters, Mat. Sb. Novaya Ser., 1950, vol. 27(69), no. 1, pp. 147–156.

    MathSciNet  MATH  Google Scholar 

  27. Gradshteyn, I.S., Differential equations in which the factors multiplying the derivatives include various powers of a small parameter, Dokl. Akad. Nauk SSSR, 1952, vol. LXXXII, no. 1, pp. 5–8.

    Google Scholar 

  28. Tikhonov, A.N., Systems of differential equations containing small parameters multiplying the derivatives, Mat. Sb., 1952, vol. 31(73), no. 3, pp. 575–586.

    Google Scholar 

  29. Gradshtein, I.S., Application of A.M. Lyapunov’s stability theory to the theory of differential equations with small factors multiplying the derivatives, Mat. Sb., 1953, vol. 32(74), no. 2, pp. 263–286.

    MATH  Google Scholar 

  30. Tikhonov, A.N., Sbornik nauchnykh trudov v 10 tomakh; RAN. V. 1. Matematika (v 2 ch.). Chast’ 1 (Collected Scientific Works in 10 vols.; RAN. Vol. 1. Mathematics (in 2 Parts). Part 1), Moscow: Nauka, 2012.

    Google Scholar 

  31. Hoppensteadt, F., Stability in systems with parameter, J. Math. Anal. Appl., 1967, vol. 18, pp. 129–134. https://doi.org/10.1016/0022-247X(67)90187-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoppensteadt, F., On systems of ordinary differential equations with several parameters multiplying the derivatives, J. Differ. Equat., 1969, vol. 5, pp. 106–116. https://doi.org/10.1016/0022-0396(69)90106-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Gradshtein, I.S., On solutions to differential equations with small factors multiplying the derivatives on the time half-line, Mat. Sb., 1953, vol. 32(74), no. 3, pp. 533–544.

    Google Scholar 

  34. Harris, W.A., Jr., Singular perturbations of two-point boundary problems for systems of ordinary differential equations, Arch. Ration. Mech. Anal., 1960. vol. 5, pp. 212–225. https://doi.org/10.1007/BF00252904

  35. Kozlovskaya, T.D., Boundary value problem for systems of conditionally stable type with various small parameters multiplying higher derivatives, Differ. Uravn., 1973, vol. IX, no. 5, pp. 832–845.

    Google Scholar 

  36. Grammel, G., On nonlinear control systems with multiple time scales, J. Dyn. Control Syst., 2004, vol. 10, no. 1, pp. 11–28. https://doi.org/10.1023/B:JODS.0000012015.69096.f1

    Article  MathSciNet  MATH  Google Scholar 

  37. Butuzov, V.F. and Nedelko, I.V., On the formation of a solution with an internal layer in a parabolic system with different powers of a small parameter, Differ. Equations, 2004, vol. 40, no. 3, pp. 382–395. https://doi.org/10.1023/B:DIEQ.0000035776.65916.d7

    Article  MathSciNet  Google Scholar 

  38. Cheng, B., Ju, Q., and Schochet, S., Three-scale singular limits of evolutionary PDEs, Arch. Ration. Mech. Anal., 2018, vol. 229, pp. 601–625. https://doi.org/10.1007/s00205-018-1233-5

    Article  MathSciNet  MATH  Google Scholar 

  39. Perjan, A. and Rusu, G., Convergence estimates for abstract second order differential equations with two small parameters and monotone nonlinearities, Topol. Methods Nonlinear Anal., 2019, vol. 54, no. 2B, pp. 1093–1110. https://doi.org/10.12775/TMNA.2019.089

    Article  MathSciNet  MATH  Google Scholar 

  40. Vasil’eva, A.B., On differential equations containing small parameters, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1951.

  41. Vasil’eva, A.B., Asymptotic formulas for solutions to systems of ordinary differential equations containing parameters of various orders of smallness multiplying the derivatives, Dokl. Akad. Nauk SSSR, 1959, vol. 128, no. 6, pp. 1110–1113.

    MathSciNet  MATH  Google Scholar 

  42. Vasil’eva, A.B., Asymptotic methods in the theory of ordinary differential equations with small parameters multiplying the highest derivatives, Doctoral (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1961.

  43. Vasil’eva, A.B., Asymptotic methods in the theory of ordinary differential equations with small parameters multiplying the highest derivatives, Comput. Math. Math. Phys., 1963, vol. 3, no. 4, pp. 823–863.

    Article  MathSciNet  MATH  Google Scholar 

  44. O’Malley, R.E., Jr., On initial value problems for nonlinear systems of differential equations with two small parameters, Arch. Ration. Mech. Anal., 1971, vol. 40, pp. 209–222. https://doi.org/10.1007/BF00281482

  45. Huang Wei-zhang and Chen Yu-sen, Initial layer phenomena for a class of singular perturbed nonlinear system with slow variables, Appl. Math. Mech., 2004, vol. 25, no. 7, pp. 836–844. https://doi.org/10.1007/bf02437577

    Article  MathSciNet  MATH  Google Scholar 

  46. Kuzmina, R.P., Asymptotic Methods for Ordinary Differential Equations, Dordrecht: Springer, 2000.

    Book  MATH  Google Scholar 

  47. Wasow, W., Asymptotic Expansions for Ordinary Differential Equations, New York–London–Sydney: John Wiley & Sons, 1965. Translated under the title: Asimptoticheskie razlozheniya reshenii obyknovennykh differentsial’nykh uravnenii, Moscow: Mir, 1968.

    MATH  Google Scholar 

  48. Wasow, W., Periodic singular perturbations of ordinary differential equations, Tr. Mezhdunar. simp. nelineinym kolebaniyam Mezhdunar. soyuza teor. prikl. mekh. (Proc. Int. Symp. Nonlinear Oscillations Int. Union Theor. Appl. Mech.), (Kiev, September 12–18, 1961), in Analiticheskie metody teorii nelineinykh kolebanii. T. I (Analytical Methods of the Theory of Nonlinear Oscillations. Vol. I), Kiev, 1963, pp. 172–180.

  49. O’Malley, R.E., Jr., Two-parameter singular perturbation problems for second-order equations, Math. Mech., 1967, vol. 16, no. 10, pp. 1143–1164.

  50. O’Malley, R.E., Jr., Singular perturbations of boundary value problems for linear ordinary differential equations involving two parameters, J. Math. Anal. Appl., 1967, vol. 19, pp. 291–308. https://doi.org/10.1016/0022-247X(67)90124-2

  51. O’Malley, R.E., Jr., Introduction to Singular Perturbations, New York–London: Academic Press, 1974.

  52. Shishkin, G.I., The first boundary value problem for a second-order equation with small parameters multiplying derivatives, Differ. Uravn., 1977, vol. 13, no. 2, pp. 376–378.

    MathSciNet  MATH  Google Scholar 

  53. Il’in, A.M. and Kovrizhnykh, O.O., Asymptotic behavior of the solution of a system of linear equations with two small parameters, Dokl. Akad. Nauk, 2004, vol. 396, no. 1, pp. 23–24.

    MathSciNet  Google Scholar 

  54. Kovrizhnykh, O.O., Asymptotic expansion of a solution of a singularly perturbed system of linear equations, Differ. Equations, 2005, vol. 41, no. 10, pp. 1392–1402. https://doi.org/10.1007/s10625-005-0291-2

    Article  MathSciNet  MATH  Google Scholar 

  55. Danilin, A.R. and Kovrizhnykh, O.O., On the asymptotics of the solution of a system of linear equations with two small parameters, Differ. Equations, 2008, vol. 44, no. 6, pp. 757–767. https://doi.org/10.1134/S0012266108060025

    Article  MathSciNet  MATH  Google Scholar 

  56. Kovrizhnykh, O.O., On an asymptotic solution of a singularly perturbed system with two small parameters, Proc. Steklov Inst. Math. (Suppl.), 2007, vol. 259, no. 2, pp. S178–S189. https://doi.org/10.1134/S0081543807060120

    Article  MATH  Google Scholar 

  57. O’Malley, R.E., Jr., Boundary value problems for linear systems of ordinary differential equations involving many small parameters, J. Math. Mech., 1969, vol. 18, no. 9, pp. 835–855.

  58. Ladde, G.S. and Rajalakshmi, S.G., Diagonalization and stability of multi-time-scale singularly perturbed linear systems, Appl. Math. Comput., 1985, vol. 16, pp. 115–140. https://doi.org/10.1016/0096-3003(85)90003-7

    Article  MathSciNet  MATH  Google Scholar 

  59. Ladde, G.S. and Rajalakshmi, S.G., Singular perturbations of linear systems with multiparameters and multiple time scales, J. Math. Anal. Appl., 1988, vol. 129, pp. 457–481.

    Article  MathSciNet  MATH  Google Scholar 

  60. Kathirkamanayagan, M. and Ladde, G.S., Singularly perturbed linear boundary value problems, J. Math. Anal. Appl., 1992, vol. 168, pp. 430–459. https://doi.org/10.1016/0022-247X(92)90171-9

    Article  MathSciNet  MATH  Google Scholar 

  61. Prljaca, N. and Gajic, Z., General transformation for block diagonalization of multi time-scale singularly perturbed linear systems, Proc. 2007 Am. Control Conf. (New York, 2007), pp. 1670–1675.

  62. Cherevko, I. and Osypova, O., Asymptotic decomposition of linear singularly perturbed multiscale systems, Miskolc Math. Notes, 2015, vol. 16, no. 2, pp. 729–745. https://doi.org/10.18514/MMN.2015.1627

    Article  MathSciNet  MATH  Google Scholar 

  63. Kodra, K. and Zhong, N., Singularly perturbed modeling and LQR controller design for a fuel cell system, Energies, 2020, vol. 13, p. 2735. https://doi.org/10.3390/en13112735

    Article  Google Scholar 

  64. Butuzov, V.F., Levashova, N.T., and Mel’nikova, A.A., Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter, Comput. Math. Math. Phys., 2012, vol. 52, no. 11, pp. 1526–1546. https://doi.org/10.1134/S096554251211005X

    Article  MathSciNet  MATH  Google Scholar 

  65. Roos, H.-G., Special features of strongly coupled systems of convection-diffusion equations with two small parameters, Appl. Math. Lett., 2012, vol. 25, no. 8, pp. 1127–1130. https://doi.org/10.1016/j.aml.2012.02.018

    Article  MathSciNet  MATH  Google Scholar 

  66. Campbell, S.L. and Rose, N.J., Singular perturbation of autonomous linear systems III, Houston J. Math., 1978, vol. 4, no. 4, pp. 527–539.

  67. Zhukova, G.S., Asimptoticheskoe integrirovanie obyknovennykh lineinykh differentsial’nykh uravnenii (Asymptotic Integration of Ordinary Linear Differential Equations), Voronezh: Izd. Voronezh. Univ., 1988.

  68. Krupa, M., Popović, N., and Kopell, N., Mixed-mode oscillations in three time-scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 2008, vol. 7, no. 2, pp. 361–420. https://doi.org/10.1137/070688912

  69. Butuzov, V.F. and Derkunova, E.A., On a singularly perturbed system of first-order partial differential equations with various degrees of a small parameter, Differ. Equations, 2006, vol. 42, no. 6, pp. 826–841. https://doi.org/10.1134/S0012266106060073

    Article  MathSciNet  MATH  Google Scholar 

  70. Derkunova, E.A., On a singularly perturbed system of three first-order partial differential equations, Vestn. Yuzhno-Ural. Univ. Ser.: Mat. Mekh. Fiz., 2012, no. 7, pp. 153–156.

  71. Butuzov, V.F., On the asymptotic behavior of solutions of singularly perturbed equations of elliptic type in a rectangular domain, Differ. Uravn., 1975, vol. XI, no. 6, pp. 1030–1041.

    MathSciNet  Google Scholar 

  72. Butuzov, V.F., Singularly perturbed elliptic type equation with two small parameters, Differ. Uravn., 1976, vol. XII, no. 10, pp. 1793–1803.

    Google Scholar 

  73. Butuzov, V.F. and Nedelko, I.V., A steplike contrast structure in a singularly perturbed system of elliptic equations with different power of a small parameter, Comput. Math. Math. Phys., 2000, vol. 40, no. 6, pp. 837–859.

    MathSciNet  MATH  Google Scholar 

  74. Butuzov, V.F. and Nesterov, A.V., On the asymptotic behavior of the solution of a parabolic equation with small parameters in the highest derivatives, USSR Comput. Math. Math. Phys., 1982, vol. 22, no. 4, pp. 100–105. https://doi.org/10.1016/0041-5553(82)90011-8

    Article  MATH  Google Scholar 

  75. Naidu, D.S. and Rao, A.K., Singular Perturbation Analysis of Discrete Control Systems. Lect. Notes Math., Berlin: Springer-Verlag, 1985, vol. 1154. https://doi.org/10.1007/BFb0074760

  76. Naidu, D.S., Singular Perturbation Methodology in Control Systems. IEE Control Eng. Ser. Vol. 34 , London: Peter Peregrinus, 1988.

    Book  Google Scholar 

  77. Krishnarayalu, M.S. and Naidu, D.S., Singular perturbation method for boundary value problems in two-parameter discrete control systems, Int. J. Syst. Sci., 1988, vol. 19, no. 10, pp. 2131–2143. https://doi.org/10.1080/00207728808964105

    Article  MathSciNet  MATH  Google Scholar 

  78. Naidu, D.S. and Krishnarayalu, M.S., Singular perturbation method for initial value problems in two-parameter discrete control systems, Int. J. Syst. Sci., 1987, vol. 18, no. 12, pp. 2197–2208. https://doi.org/10.1080/00207728708967181

    Article  MATH  Google Scholar 

  79. Kishore Babu, G. and Krishnarayalu, M.S., An application of discrete two parameter singular perturbation method, Int. J. Eng. Res. Technol., 2012, vol. 1, no. 10, pp. 1–10.

    Google Scholar 

  80. Kishor Babu, G. and Krishnarayalu, M.S., Application of singular perturbation method to two parameter discrete power system model, J. Control Instrum. Eng., 2017, vol. 3, no. 3, pp. 1–13.

    Google Scholar 

  81. Kishor Babu, G. and Krishnarayalu, M.S., Discrete multi parameter singular perturbation method with power system application, Int. J. Recent Technol. Eng., 2019, vol. 8, no. 2, pp. 236–244. https://doi.org/10.35940/ijrte.A3081.078219

    Article  Google Scholar 

  82. O’Riordan, E., Pickett, M.L., and Shishkin, G.I., Singularly perturbed problems. Modeling reaction–convection–diffusion processes, Comput. Methods Appl. Math., 2003, vol. 3, no. 3, pp. 424–442. https://doi.org/10.2478/cmam-2003-0028

    Article  MathSciNet  MATH  Google Scholar 

  83. O’Riordan, E. and Pickett, M.L., Numerical approximations to the scaled first derivatives of the solution of a two parameter singularly perturbed problem, J. Comput. Appl. Math., 2019, vol. 347, pp. 128–149. https://doi.org/10.1016/j.cam.2018.08.004

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhang, J. and Lv, Y., High-order finite element method on a Bakhvalov-type mesh for a singularly perturbed convection–diffusion problem with two parameters, Appl. Math. Comput., 2021. vol. 397, 125953. https://doi.org/10.1016/j.amc.2021.125953

  85. Khandelwal, P. and Khan, A., Singularly perturbed convection–diffusion boundary value problems with two small parameters using nonpolynomial spline technique, Math. Sci., 2017, vol. 11, no. 2, pp. 119–126. https://doi.org/10.1007/s40096-017-0215-3

    Article  MathSciNet  MATH  Google Scholar 

  86. Chandru, M., Prabha, T., and Shanthi, V., A parameter robust higher order numerical method for singularly perturbed two parameter problems with non-smooth data, J. Comput. Appl. Math., 2017, vol. 309, pp. 11–27. https://doi.org/10.1016/j.cam.2016.06.009

    Article  MathSciNet  MATH  Google Scholar 

  87. Tikhovskaya, S.V. and Korbut, M.F., Two-grid algorithm for the solution of singularly perturbed two-parameter problem on Shishkin mesh, J. Phys. Conf. Ser., 2019, vol. 1210, p. 012142. https://doi.org/10.1088/1742-6596/1210/1/012142

    Article  Google Scholar 

  88. Rao, S.C.S. and Chawla, S., Parameter-uniform convergence of a numerical method for a coupled system of singularly perturbed semilinear reaction-diffusion equations with boundary and interior layers, J. Comput. Appl. Math., 2019, vol. 352, pp. 223–239. https://doi.org/10.1016/j.cam.2018.11.021

    Article  MathSciNet  MATH  Google Scholar 

  89. O’Riordan, E., Pickett, M.L., and Shishkin, G.I., Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion–convection–reaction problems, Math. Comp., 2006, vol. 75, no. 255, pp. 1135–1154. https://doi.org/10.1090/S0025-5718-06-01846-1

    Article  MathSciNet  MATH  Google Scholar 

  90. Das, P. and Mehrmann, V., Numerical solution of singularly perturbed convection–diffusion–reaction problems with two small parameters, BIT Numer. Math., 2016, vol. 56, no. 1, pp. 51–76. https://doi.org/10.1007/s10543-015-0559-8

    Article  MathSciNet  MATH  Google Scholar 

  91. Shishkin, G.I., Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side, Comput. Math. Math. Phys., 2006, vol. 46, no. 3, pp. 388–401. https://doi.org/10.1134/S0965542506030067

    Article  MathSciNet  MATH  Google Scholar 

  92. Shishkin, G.I., Grid approximation of a singularly perturbed elliptic equation with convective terms in the presence of various boundary layers, Comput. Math. Math. Phys., 2005, vol. 45, no. 1, pp. 104–119.

    MathSciNet  Google Scholar 

  93. Shishkin, G., Multiscale problems with various boundary layers for PDEs in unbounded domains, Math. Model. Anal. Proc. 10th Int. Conf. MMA2005 & CMAM2 (Trakai, 2005), pp. 251–257.

  94. Kalaiselvan, S.S., Miller, J.J.H., and Sigamani, V., A parameter uniform numerical method for a singularly perturbed two-parameter delay differential equation, Appl. Numer. Math., 2019, vol. 145, pp. 90–110. https://doi.org/10.1016/j.apnum.2019.05.028

    Article  MathSciNet  MATH  Google Scholar 

  95. Govindarao, L., Sahu, S.R., and Mohapatra, J., Uniformly convergent numerical method for singularly perturbed time delay parabolic problem with two small parameters, Iran. J. Sci. Technol. Trans. A: Sci., 2019, vol. 43, no. 5, pp. 2373–2383. https://doi.org/10.1007/s40995-019-00697-2

    Article  MathSciNet  MATH  Google Scholar 

  96. Sumit, Kumar S. and Kuldeep, Kumar M., A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem, Comput. Appl. Math., 2020, vol. 39, 209. https://doi.org/10.1007/s40314-020-01236-1

  97. Chandru, M., Das, P., and Ramos, H., Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data, Math. Methods Appl. Sci., 2018, vol. 41, pp. 5359–5387. https://doi.org/10.1002/mma.5067

    Article  MathSciNet  MATH  Google Scholar 

  98. Kumar, D. and Kumari, P., Uniformly convergent scheme for two-parameter singularly perturbed problems with non-smooth data, Numer. Methods Partial Differ. Equat., 2020, vol. 37, pp. 796–817. https://doi.org/10.1002/num.22553

    Article  MathSciNet  Google Scholar 

  99. Brdar, M., Franz, S., and Roos, H.-G., Numerical treatment of singularly perturbed fourth-order two-parameter problems, Electron. Trans. Numer. Anal., 2019, vol. 51, pp. 50–62. https://doi.org/10.1553/etna_vol51s50

    Article  MathSciNet  MATH  Google Scholar 

  100. Das, P., Rana, S., and Vigo-Aguiar, J., Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature, Appl. Numer. Math., 2020, vol. 148, pp. 79–97. https://doi.org/10.1016/j.apnum.2019.08.028

    Article  MathSciNet  MATH  Google Scholar 

  101. Roos, H.-G. and Schopf, M., Layer structure and the Galerkin finite element method for a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales, ESAIM: Math. Model. Numer. Anal. M2AN., 2015, vol. 49, no. 5, pp. 1525–1547. https://doi.org/10.1051/m2an/2015027

    Article  MathSciNet  MATH  Google Scholar 

  102. Khalil, H.K. and Kokotovic, P.V., Control of linear systems with multiparameter singular perturbations, Automatica, 1979, vol. 15, no. 2, pp. 197–207. https://doi.org/10.1016/0005-1098(79)90070-0

    Article  MathSciNet  MATH  Google Scholar 

  103. Khalil, H.K. and Kokotovic, P.V., D-stability and multi-parameter singular perturbation, SIAM J. Control Optim., 1979, vol. 17, no. 1, pp. 56–65. https://doi.org/10.1137/0317006

    Article  MathSciNet  MATH  Google Scholar 

  104. Ladde, G.S. and šiljak, D.D., Multiparameter singular perturbations of linear systems with multiple time scales, Automatica, 1983, vol. 19, no. 4, pp. 385–394. https://doi.org/10.1016/0005-1098(83)90052-3

  105. Grujić, L.T., Singular perturbations, large-scale systems and asymptotic stability of invariant sets, Int. J. Syst. Sci., 1979, vol. 10, no. 12, pp. 1323–1341. https://doi.org/10.1080/00207727908941662

  106. Grujić, L.T., Singular perturbations and large-scale systems, Int. J. Control, 1979, vol. 29, no. 1, pp. 159–169. https://doi.org/10.1080/00207177908922687

  107. Tellili, A., Abdelkrim, N., Challouf, A., and Abdelkrim, M.N., Adaptive fault tolerant control of multi-time-scale singularly perturbed systems, Int. J. Autom. Comput., 2018, vol. 15, no. 6, pp. 736–746. https://doi.org/10.1007/s11633-016-0971-9

    Article  MATH  Google Scholar 

  108. Khalil, H.K., Asymptotic stability of nonlinear multiparameter singularly perturbed systems, Automatica, 1981, vol. 17, no. 6, pp. 797–804. https://doi.org/10.1016/0005-1098(81)90067-4

    Article  MathSciNet  MATH  Google Scholar 

  109. Voropaeva, N.V. and Sobolev, V.A., Dekompozitsiya mnogotempovykh sistem (Decomposition of Multiple-Time Scale Systems), Samara: SMS, 2000.

    Google Scholar 

  110. Hsiao, F.-H., Pan, S.-T., and Teng, C.-C., D-stability bound analysis for discrete multiparameter singularly perturbed systems, IEEE Trans. Circuits Syst.–I: Fundam. Theory Appl., 1997, vol. 44, no. 4, pp. 347–351. https://doi.org/10.1109/81.563624

    Article  MathSciNet  Google Scholar 

  111. Chiou, J.-S. and Wang, C.-J., An infinite \(\varepsilon\)-bound stability criterion for a class of multiparameter singularly perturbed time-delay systems, Int. J. Syst. Sci., 2005, vol. 36, no. 8, pp. 485–490. https://doi.org/10.1080/00207720500156421

    Article  MathSciNet  MATH  Google Scholar 

  112. Abed, E.H. and Tits, A.L., On the stability of multiple time-scale systems, Int. J. Control, 1986, vol. 44, no. 1, pp. 211–218. https://doi.org/10.1080/00207178608933591

    Article  MathSciNet  MATH  Google Scholar 

  113. Abed, E.H., Decomposition and stability of multiparameter singular perturbation problems, IEEE Trans. Autom. Control., 1986, vol. AC-31, no. 10, pp. 925–934. https://doi.org/10.1109/TAC.1986.1104130

    Article  MATH  Google Scholar 

  114. Abed, E.H., New results in multiparameter singular perturbations, Proc. 25th Conf. Decis. Control (Athens, Greece, 1986), pp. 1385–1387. https://doi.org/10.1109/CDC.1986.267612

  115. Desoer, C.A. and Shahruz, S.M., Stability of nonlinear systems with three time scale, Circuits Syst. Signal Process., 1986, vol. 5, no. 4, pp. 449–464. https://doi.org/10.1007/BF01599620

    Article  MathSciNet  MATH  Google Scholar 

  116. Miladzhanov, V.G., Stability of singular large-scale systems in the presence of structural perturbations, Int. Appl. Mech., 1993, vol. 29, pp. 480–486. https://doi.org/10.1007/BF00846912

    Article  MathSciNet  Google Scholar 

  117. Martynyuk, A.A. and Miladzhanov, V.G., Stability Theory of Large-Scale Dynamical Systems, bookboon.com, 2014.

  118. Cardin, P.T. and Teixeira, M.A., Fenichel theory for multiple time scale singular perturbation problems, SIAM J. Appl. Dyn. Syst., 2017, vol. 16, no. 3, pp. 1425–1452. https://doi.org/10.1137/16M1067202

    Article  MathSciNet  MATH  Google Scholar 

  119. Cardin, P.T. and Teixeira, M.A., A geometric singular perturbation theory approach to constrained differential equations, Math. Nachr., 2019, vol. 292, no. 4, pp. 892–904. https://doi.org/10.1002/mana.201700444

    Article  MathSciNet  MATH  Google Scholar 

  120. Abed, E.H. and Silva-Madriz, R.I., Stability of systems with multiple very small and very large parasitics, IEEE Trans. Circuits Syst., 1987, vol. CAS-34. No. 9, pp. 1107–1110. https://doi.org/10.1109/TCS.1987.1086248

    Article  MathSciNet  Google Scholar 

  121. Khalil, H.K., Stabilization of multiparameter singularly perturbed systems, IEEE Trans. Autom. Control, 1979, vol. 24, no. 5, pp. 790–791. https://doi.org/10.1109/TAC.1979.1102145

    Article  MATH  Google Scholar 

  122. Khalil, H.K., Asymptotic stability of non-linear multiparameter singularly perturbed systems, IFAC Control Sci. Technol. (8th Trienn. World Congr.) (Kyoto, Japan, 1981), pp. 137–142.

  123. Dmitriev, M. and Makarov, D., Stabilization of quasilinear systems with multiparameter singular perturbations, 13th Int. Conf. Manage. Large-Scale Syst. Dev. (MLSD) (2020). https://doi.org/10.1109/MLSD49919.2020.9247844

  124. Shpilevaya, O.Ya., Studying two-time scale processes in an adaptive system, J. Comput. Syst. Sci. Int., 2009, vol. 48, no. 6, pp. 899–905.

    Article  MathSciNet  MATH  Google Scholar 

  125. Dontchev, A.L., Time-scale decomposition of the reachable set of constrained linear systems, Math. Control Signal Syst., 1992, vol. 5, pp. 327–340.

    Article  MathSciNet  MATH  Google Scholar 

  126. Abed, E.H. and Silva-Madriz, R.I., Controllability of multiparameter singularly perturbed systems, IFAC 10th Trienn. World Congr. (Munich, 1987), pp. 127–130.

  127. Kekang, X. and Zhenquan, W., D-controllability and strong D-controllability and control of multiparameter and multiple time-scale singularly perturbed systems, in System Analysis and Simulation I. Advances in Simulation. Vol. 1, New York: Springer, 1988, pp. 255–258. https://doi.org/10.1007/978-1-4684-6389-7_53

  128. Kekang, X. and Zhenquan, W., D-controllability and control of multiparameter and multiple time-scale singularly perturbed systems, J. Syst. Sci. Math. Sci., 1989, vol. 2, no. 3, pp. 243–251.

    MathSciNet  MATH  Google Scholar 

  129. Kurina, G.A., Complete controllability of various-speed singularly perturbed systems, Math. Notes, 1992, vol. 52, no. 4, pp. 1029–1033. https://doi.org/10.1007/BF01210436

    Article  MathSciNet  MATH  Google Scholar 

  130. Kopeikina, T.B., Controllability of multi-tempo singularly perturbed systems of differential equations, Tr. BGTU. Ser. 3: Fiz.-Mat. Nauki Inf., 2011, no. 6, pp. 7–11.

  131. Kirillova, F.M. and Churakova, S.V., Relative controllability of linear dynamical time-delay systems, Dokl. Akad. Nauk SSSR, 1967, vol. 174, no. 6, pp. 1260–1263.

    MathSciNet  Google Scholar 

  132. Kopeikina, T.B. and Grekova, A.V., Controllability of essentially multi-tempo singularly perturbed dynamical systems, Nauka Tekh., 2013, no. 5, pp. 75–82.

  133. Semenova, M.M., Decomposition of multi-tempo models of controlled and observed systems, Izv. Samar. Nauchn. Tsentra RAN. Inf. Vychisl. Tekh. Upr., 2020, vol. 22, no. 1, pp. 93–97.

    Google Scholar 

  134. Belokopytov, S.V. and Dmitriev, M.G., Solution of classical optimal control problems with a boundary layer, Autom. Remote Control, 1989, vol. 50, no. 7, pp. 907–917.

    MathSciNet  MATH  Google Scholar 

  135. Mukaidani, H., A numerical algorithm for finding solution of sign-indefinite algebraic Riccati equations for general multiparameter singularly perturbed systems, Appl. Math. Comput., 2007, vol. 189, no. 1, pp. 255–270. https://doi.org/10.1016/j.amc.2006.11.088

    Article  MathSciNet  MATH  Google Scholar 

  136. Wang, Y-Y., Frank, P.M., and Wu, N.E., Near-optimal control of nonstandard singularly perturbed systems, Automatica, 1994, vol. 30, no. 2, pp. 277–292. https://doi.org/10.1016/0005-1098(94)90030-2

    Article  MathSciNet  MATH  Google Scholar 

  137. Gajić, Z. and Lim, M., Optimal Control of Singularly Perturbed Linear Systems and Applications. High-Accuracy Techniques. Control Engineering Series, New York: Marcel Dekker, 2000.

  138. Coumarbatch, C. and Gajić, Z., Exact decomposition of the algebraic Riccati equation of deterministic multimodeling optimal control problems, IEEE Trans. Autom. Control, 2000, vol. 45, no. 4, pp. 790–794. https://doi.org/10.1109/9.847124

  139. Mukaidani, H., Xu, H., and Mizukami, K., New results for near-optimal control of linear multiparameter singularly perturbed systems, Automatica, 2003, vol. 39, pp. 2157–2167. https://doi.org/10.1016/S0005-1098(03)00248-6

    Article  MathSciNet  MATH  Google Scholar 

  140. Mukaidani, H., Xu, H., and Mizukami, K., Feedback control of linear multiparameter singularly perturbed systems, IFAC 15th Trienn. World Congr. (Barcelona, 2002).

  141. Mukaidani, H., Shimomura, T., and Xu, H., Near-optimal control of linear multiparameter singularly perturbed systems, IEEE Trans. Autom. Control, 2002, vol. 47, no. 12, pp. 2051–2057. https://doi.org/10.1109/TAC.2002.805676

    Article  MathSciNet  MATH  Google Scholar 

  142. Mahmoud, M.S., Hassan, M.F., and Singh, M.G., Approximate feedback design for a class of singularly perturbed systems, IEE Proc. D (Control Theory Appl.), 1982, vol. 129, no. 2, pp. 49–56. https://doi.org/10.1049/ip-d.1982.0011

    Article  Google Scholar 

  143. Drǎgan, V. and Halanay, A., Suboptimal stabilization of linear systems with several time scales, Int. J. Control, 1982, vol. 36, no. 1, pp. 109–126. https://doi.org/10.1080/00207178208932879

  144. Prljaca, N. and Gajic, Z., A method for optimal control and filtering of multitime-scale linear singularly-perturbed stochastic systems, Automatica, 2008, vol. 44, pp. 2149–2156. https://doi.org/10.1016/j.automatica.2007.12.001

    Article  MathSciNet  MATH  Google Scholar 

  145. Radisavljević-Gajić, V., Milanović, M., and Rose, P., Multi-Stage and Multi-Time Scale Feedback Control of Linear Systems with Applications to Fuel Cells. Mechanical Engineering Ser., Cham, Switzerland: Springer, 2019. https://doi.org/10.1007/978-3-030-10389-7

  146. Kalashnikova, M.A. and Kurina, G.A., Asymptotics of the solution of the three-time scale optimal control problem, Tr. XII Vseross. Sov. Probl. Upr. (Tr. XII All-Russ. Meet. Control Probl.) (Moscow, 2014), Moscow: IPU RAN, 2014, pp. 1560–1570.

  147. Kalashnikova, M.A. and Kurina, G.A., Asymptotic solution of linear-quadratic problems with cheap controls of different prices, Tr. Inst. Mat. Mekh. UrO RAN, 2016, vol. 22, no. 1, pp. 124–139.

    Google Scholar 

  148. Kalashnikova, M.A., Asymptotics of the zero-order approximation to the solution of the three-time scale linear-quadratic optimal control problem, Model. Anal. Inf. Sist., 2015, vol. 22, no. 1, pp. 85–104.

    Article  MathSciNet  Google Scholar 

  149. Kalashnikova, M.A. and Kurina, G.A., Approximations of any order of the asymptotic solution to the three-time scale linear-quadratic optimal control problem by the direct scheme method, Vestn. VGU. Ser.: Sist. Anal. Inf. Tekhnol., 2018, no. 3, pp. 33–43. https://doi.org/10.17308/sait.2018.3/1228

  150. Yuan, Y., Sun, F., and Hu, Y., Decentralized multi-objective robust control of interconnected fuzzy singular perturbed model with multiple perturbation parameters, WCCI 2012 IEEE World Congr. Comput. Intell. (Brisbane, Australia, 2012). https://doi.org/10.1109/FUZZ-IEEE.2012.6251367

  151. Krishnarayalu, M.S., Singular perturbation method applied to the open-loop discrete optimal control problem with two small parameters, Int. J. Syst. Sci., 1989, vol. 20, no. 5, pp. 793–809. https://doi.org/10.1080/00207728908910170

    Article  MathSciNet  MATH  Google Scholar 

  152. Kishore Babu, G. and Krishnarayalu, M.S., Suboptimal control of singularly perturbed two parameter discrete control system, Int. Electr. Eng. J., 2014, vol. 5, no. 11, pp. 1594–1604.

    Google Scholar 

  153. Kishore Babu, G. and Krishnarayalu, M.S., Suboptimal control of singularly perturbed multiparameter discrete control system, 2015 IEEE Int. Conf. Power Instrum. Control Comput. (Thrissur, India, 2015). https://doi.org/10.1109/PICC.2015.7455794

  154. Kishore Babu, G., Singular perturbation method for boundary value and optimal problems to power factor correction converter application, WSEAS Trans. Electron., 2020, vol. 11, pp. 42–53. https://doi.org/10.37394/232017.2020.11.6

    Article  Google Scholar 

  155. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  156. Drǎgan, V., Cheap control with several scales, Rev. Roumaine Math. Pures Appl., 1988, vol. 33, no. 8, pp. 663–677.

  157. Kurina, G. and Kalashnikova, M., High order asymptotic solution of linear-quadratic optimal control problems under cheap controls with two different costs, 21st Int. Conf. Syst. Theory Control Comput. (Sinaia, 2017), pp. 499–504. https://doi.org/10.1109/ICSTCC.2017.8107083

  158. Kalashnikova, M.А. and Kurina, G.А., Direct scheme for the asymptotic solution of linear-quadratic problems with cheap controls of different costs, Differ. Equations, 2019, vol. 55, no. 1, pp. 84–104. https://doi.org/10.1134/S0012266119010099

    Article  MathSciNet  MATH  Google Scholar 

  159. Kalashnikova, M. and Kurina, G., Estimates of asymptotic solution of linear-quadratic optimal control problems with cheap controls of two different orders of smallness, Math. Numer. Aspects Dyn. Syst. Anal. DSTA (Lodz, 2017), pp. 253–264.

  160. Butuzov, V.F. and Nefedov, N.N., On a problem in singular perturbation theory, Differ. Uravn., 1976, vol. 12, no. 10, pp. 1736–1747.

    MATH  Google Scholar 

  161. Vasil’eva, A.B. and Butuzov, V.F., Singularly Perturbed Equations in the Critical Case, Madison: Univ. Wisconsin-Madison, 1980.

    Google Scholar 

  162. Kurina, G.A. and Hoai, N.T., Projector approach to the Butuzov–Nefedov algorithm for asymptotic solution of a class of singularly perturbed problems in a critical case, Comput. Math. Math. Phys., 2020, vol. 60, no. 12, pp. 2007–2018. https://doi.org/10.1134/S0965542520120076

    Article  MathSciNet  MATH  Google Scholar 

  163. O’Malley, R.E., Jr., A singular singularly-perturbed linear boundary value problem, SIAM. J. Math. Anal., 1979, vol. 10, no. 4, pp. 695–708.

  164. Kurina, G. and Nguyen, T.H., Zero-order asymptotic solution of a class of singularly perturbed linear-quadratic problems with weak controls in a critical case, Optim. Control Appl. Meth., 2019, vol. 40, no. 5, pp. 859–879. https://doi.org/10.1002/oca.2514

    Article  MathSciNet  MATH  Google Scholar 

  165. Bukzhalev, E.E., A singularly perturbed equation with a boundary-layer solution whose expanded variables depend on various powers of a perturbation parameter, Comput. Math. Math. Phys., 2003, vol. 43, no. 12, pp. 1707–1717.

    MathSciNet  MATH  Google Scholar 

  166. Vasil’eva, A.B. and Davydova, M.A., Singularly perturbed second-order equation with small parameters multiplying the first and second derivatives, Comput. Math. Math. Phys., 1999, vol. 39, no. 9, pp. 1441–1448.

    MathSciNet  MATH  Google Scholar 

  167. Kapustina, T.O., Asymptotics with respect to small parameters of the solution of a parabolic problem with discontinuous data, Differ. Equations, 2001, vol. 37, no. 1, pp. 138–140. https://doi.org/10.1023/A:1019236818987

    Article  MathSciNet  MATH  Google Scholar 

  168. Bukzhalev, E.E. and Vasil’eva, A.B., Solutions to a singularly perturbed parabolic equation with internal and boundary layers depending on stretched variables of different orders, Comput. Math. Math. Phys., 2007, vol. 47, no. 3, pp. 407–419.

    Article  MathSciNet  MATH  Google Scholar 

  169. Vasil’eva, A.B., On singularities of solutions of singularly perturbed boundary value problems when the roots of a degenerate equation merge, Comput. Math. Math. Phys., 2003, vol. 43, no. 4, pp. 529–536.

    MathSciNet  Google Scholar 

  170. Butuzov, V.F., On the special properties of the boundary layer in singularly perturbed problems with multiple root of the degenerate equation, Math. Notes, 2013, vol. 94, pp. 60–70. https://doi.org/10.1134/S0001434613070067

    Article  MathSciNet  MATH  Google Scholar 

  171. Butuzov, V.F., On the dependence of the structure of boundary layers on the boundary conditions in a singularly perturbed boundary-value problem with multiple root of the related degenerate equation, Math. Notes, 2016, vol. 99, no. 2, pp. 210–221. https://doi.org/10.1134/S0001434616010247

    Article  MathSciNet  MATH  Google Scholar 

  172. Butuzov, V.F., On one singularly perturbed system of ordinary differential equations with multiple root of the degenerate equation, J. Math. Sci., 2019, vol. 240, no. 3, pp. 224–248. https://doi.org/10.1007/s10958-019-04350-6

    Article  MathSciNet  MATH  Google Scholar 

  173. Butuzov, V.F., Asymptotics of the solution of a system of singularly perturbed equations in the case of a multiple root of the degenerate equation, Differ. Equations, 2014, vol. 50, no. 2, pp. 177–188. https://doi.org/10.1134/S0012266114020050

    Article  MathSciNet  MATH  Google Scholar 

  174. Butuzov, V.F., On singularly perturbed systems of ODE with a multiple root of the degenerate equation, Izv. Math., 2020, vol. 84, no. 2, pp. 262–290. https://doi.org/10.1070/IM8829

    Article  MathSciNet  MATH  Google Scholar 

  175. Butuzov, V.F. and Bychkov, A.I., Asymptotics of the solution to an initial boundary value problem for a singularly perturbed parabolic equation in the case of a triple root of the degenerate equation, Comput. Math. Math. Phys., 2016, vol. 56, no. 4, pp. 593–611. https://doi.org/10.1134/S0965542516040060

    Article  MathSciNet  MATH  Google Scholar 

  176. Butuzov, V.F., On periodic solutions to singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation, Comput. Math. Math. Phys., 2011, vol. 51, no. 1, pp. 40–50. https://doi.org/10.1134/S0965542511010064

    Article  MathSciNet  Google Scholar 

  177. Butuzov, V.F., On asymptotics for the solution of a singularly perturbed parabolic problem with a multizone internal transition layer, Comput. Math. Math. Phys., 2018, vol. 58, no. 6, pp. 925–949. https://doi.org/10.1134/S0965542518060040

    Article  MathSciNet  MATH  Google Scholar 

  178. Butuzov, V.F., Nefedov, N.N., Recke, L., and Schneider, K.R., Existence, asymptotics, stability and region of attraction of a periodic boundary layer solution in case of a double root of the degenerate equation, Comput. Math. Math. Phys., 2018, vol. 58, no. 12, pp. 1989–2001. https://doi.org/10.1134/S0965542518120072

    Article  MathSciNet  MATH  Google Scholar 

  179. Butuzov, V.F., Asymptotic expansion of the solution to a partially dissipative system of equations with a multizone boundary layer, Comput. Math. Math. Phys., 2019, vol. 59, no. 10, pp. 1672–1692. https://doi.org/10.1134/S0965542519100051

    Article  MathSciNet  MATH  Google Scholar 

  180. Il’in, A.M., Izbrannye nauchnye trudy. Matematika (Selected Scientific Works. Mathematics), Chelyabinsk: Izd. Chelyabinsk. Gos. Univ., 2018.

    Google Scholar 

  181. Il’in, A.M., Boundary layer, Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya, 1988, vol. 34, pp. 175–213.

    MATH  Google Scholar 

  182. Il’in, A.M. and Khachai, O.Yu., Structure of boundary layers in singular problems, Dokl. Math., 2012, vol. 86, no. 1, pp. 497–499. https://doi.org/10.1134/S1064562412040187

    Article  MathSciNet  MATH  Google Scholar 

  183. Danilin, A.R., Zakharov, S.V., Kovrizhnykh, O.O., Lelikova, E.F., Pershin, I.V., and Khachai, O.Yu., Yekaterinburg legacy of Arlen Mikhailovich Il’in, Tr. IMM Uro RAN, 2017, vol. 23, no. 2, pp. 42–66. https://doi.org/10.21538/0134-4889-2017-23-2-42-66

    Article  Google Scholar 

  184. Il’in, A.M. and Lelikova, E.F., Method for matching asymptotic expansions for the equation \( \varepsilon \Delta u -a(x,y)u_y=f(x,y)\) in a rectangle, Mat. Sb., 1975, vol. 96(138), no. 4, pp. 568–583.

    MATH  Google Scholar 

  185. Il’in, A.M. and Danilin, A.R., Asimptoticheskie metody v analize (Asymptotic Methods in Analysis), Moscow: Fizmatlit, 2009.

    Google Scholar 

  186. Butuzova, M.V., Asymptotic behavior of the solution of a bisingular problem for a system of linear parabolic equations. I, Model. Anal. Inf. Sist., 2013, vol. 20, no. 1, pp. 5–17. https://doi.org/10.18255/1818-1015-2013-1-5-17

  187. Krishnarayalu, M.S., Singular perturbation methods for a class of initial and boundary value problems in multi-parameter classical digital control systems, ANZIAM J., 2004, vol. 46, pp. 67–77. https://doi.org/10.1017/S1446181100013675

    Article  MathSciNet  MATH  Google Scholar 

  188. Kalinin, A.I., Asimptoticheskie metody optimizatsii vozmushchennykh dinamicheskikh sistem (Asymptotic Methods for Optimizing Perturbed Dynamical Systems), Minsk: UP Ekoperspektiva, 2000.

    Google Scholar 

  189. Gribkovskaya, I.V. and Kalinin, A.I., Asymptotic behavior of the solution of the time optimality problem for a linear singularly perturbed system that contains parameters of variable orders of smallness at the derivatives, Differ. Equations, 1995, vol. 31, no. 8, pp. 1219–1228.

    MathSciNet  Google Scholar 

  190. Gribkovskaya, I.V. and Kalinin, A.I., Asymptotic optimization of a linear singularly perturbed system containing parameters of different orders of smallness in the derivatives, Comput. Math. Math. Phys., 1995, vol. 35, no. 9, pp. 1041–1051.

    MathSciNet  MATH  Google Scholar 

  191. Kalinin, A.I. and Gribkovskaya, I.V., Asymptotic optimization of linear dynamical systems containing parameters of different orders of smallness multiplying the derivatives, Vestn. Belorus. Univ. Ser. 1: Fiz. Mat. Inf., 1996, no. 3, pp. 52–55.

  192. Gribkovskaya, I.V. and Kalinin, A.I., An asymptotically optimal controller for a linear dynamical system containing parameters of different orders of smallness multiplying the derivatives, Izv. RAN. Teoriya Sist. Upr., 1997, no. 4, pp. 78–82.

  193. Gaitsgory, V. and Nguyen, M.-T., Averaging of three time scale singularly perturbed control systems, Syst. Control Lett., 2001, vol. 42, pp. 395–403. https://doi.org/10.1016/S0167-6911(00)00111-0

    Article  MathSciNet  MATH  Google Scholar 

  194. Gaitsgory, V. and Nguyen, M.-T., Multiscale singularly perturbed control systems: Limit occupational measures sets and averaging, SIAM J. Control Optim., 2002, vol. 41, no. 3, pp. 954–974. https://doi.org/10.1137/S0363012901393055

    Article  MathSciNet  MATH  Google Scholar 

  195. Mukaidani, H., Pareto near-optimal strategy of multimodeling systems, IECON’01. 27th Annu. Conf. IEEE Ind. Electron. Soc. (2001), vol. 1, pp. 500–505. https://doi.org/10.1109/IECON.2001.976533

  196. Khalil, H.K. and Kokotović, P.V., Control strategies for decision makers using different models of the same system, IEEE Trans. Autom. Control, 1978, vol. 23, no. 2, pp. 289–298. https://doi.org/10.1109/TAC.1978.1101712

  197. Pan, Z. and Basar, T., Multi-time scale zero-sum differential games with perfect state measurements, Dyn. Control, 1995, vol. 5, pp. 7–29. https://doi.org/10.1109/CDC.1993.325835

  198. Khalil, H.K., Multimodel design of a Nash strategy, J. Optim. Theory Appl., 1980, vol. 31, no. 4, pp. 553–564. https://doi.org/10.1007/BF00934477

    Article  MathSciNet  MATH  Google Scholar 

  199. Mukaidani, H. and Xu, H., Near-optimal Nash strategy for multiparameter singularly perturbed systems, 43rd IEEE Conf. Decis. Control (Atlantis, Paradise Island, Bahamas, 2004), pp. 4868–4873. https://doi.org/10.1109/CDC.2004.1429568

  200. Mukaidani, H., A new design approach for solving linear quadratic Nash games of multiparameter singularly perturbed systems, IEEE Trans. Circuits Syst.–I. Regular Pap., 2005, vol. 52, no. 5, pp. 960–974. https://doi.org/10.1109/TCSI.2005.846668

    Article  MathSciNet  MATH  Google Scholar 

  201. Mukaidani, H., Local uniqueness for Nash solutions of multiparameter singularly perturbed systems, IEEE Trans. Circuits Syst. II: Express Briefs, 2006, vol. 53, no. 10, pp. 1103–1107. https://doi.org/10.1109/TCSII.2006.882211

    Article  Google Scholar 

  202. Mukaidani, H., Xu, H., and Dragan, V., Soft-constrained stochastic Nash games for multimodeling systems via static output feedback strategy, Joint 48th IEEE Conf. Decis. Control & 28th Chin. Control Conf. (Shanghai, 2009) P. 5786–5791. https://doi.org/10.1109/CDC.2009.5400302

  203. Sagara, M., Mukaidani, H., and Dragan, V., Near-optimal control for multiparameter singularly perturbed stochastic systems, Optim. Control Appl. Methods, 2011, vol. 32, no. 1, pp. 113–125. https://doi.org/10.1002/oca.934

    Article  MathSciNet  MATH  Google Scholar 

  204. Dragan, V., Near optimal linear quadratic regulator for controlled systems described by Itô differential equations with two fast time scales, Ann. Acad. Rom. Sci. Ser. Math. Appl., 2017, vol. 9, no. 1, pp. 89–109.

    MathSciNet  MATH  Google Scholar 

  205. Drǎgan, V., On the linear quadratic optimal control for systems described by singularly perturbed Itô differential equations with two fast time scales, Axioms, 2019, vol. 8, no. 1, p. 30. https://doi.org/10.3390/axioms8010030

  206. Sayasov, Yu.S. and Vasil’eva, A.B., Justification and conditions of applicability of the Semenov-Bodenstein method of quasi-steady-state concentrations, Zh. Fiz. Khim., 1955, vol. 29, no. 5, pp. 802–808.

    Google Scholar 

  207. Eilertsen, J., Stroberg, W., and Schnell, S., Characteristic, completion or matching timescales? An analysis of temporary boundaries in enzyme kinetics, J. Theor. Biol., 2019, vol. 481, pp. 28–43. https://doi.org/10.1016/j.jtbi.2019.01.005

    Article  MathSciNet  MATH  Google Scholar 

  208. Kruff, N. and Walcher, S., Coordinate-independent singular perturbation reduction for systems with three time scales, Math. Biosci. Eng., 2019. V.16, no. 5, pp. 5062–5091. https://doi.org/10.3934/mbe.2019255

  209. Kodra, K., Zhong, N., and Gajić, Z., Multi-time-scale systems control via use of combined controllers, 2016 Eur. Control Conf. (Aalborg, Denmark, 2016), pp. 2638–2643. https://doi.org/10.1109/ECC.2016.7810688

  210. Milanovic, M. and Radisavljevic-Gajic, V., Multi-timescale-based partial optimal control of a proton-exchange membrane fuel cell, Energies, 2020, vol. 13, no. 1, 166. https://doi.org/10.3390/en13010166

  211. Jayanthi, S. and Del Vecchio, D., Retroactivity attenuation in bio-molecular systems based on timescale separation, IEEE Trans. Autom. Control, 2011, vol. 56, no. 4, pp. 748–761. https://doi.org/10.1109/TAC.2010.2069631

    Article  MathSciNet  MATH  Google Scholar 

  212. Il’in, A.M. and Kamenkovich, V.M., On the structure of the boundary layer in the two-dimensional theory of ocean currents, Okeanologiya, 1964, vol. 4, no. 5, pp. 756–769.

    Google Scholar 

  213. Drǎgan, V. and Halanay, A., Stability problems for synchronous machines by singular perturbation methods, Rev. Roum. Sci. Technol.-Electrotech. Energ., 1982, vol. 27, no. 2, pp. 199–209.

  214. Meng, X., Wang, Q., Zhou, N., Xiao, S., and Chi, Y., Multi-time scale model order reduction and stability consistency certification of inverter-interfaced DG system in AC microgrid, Energies, 2018, vol. 11, no. 1, p. 254. https://doi.org/10.3390/en11010254

    Article  Google Scholar 

  215. Munje, R., Lin, S., Zhang, G., and Zhang, W., Observer-based output feedback integral control for coal-fired power plant: A three-time-scale perspective, IEEE Trans. Control Syst. Tech., 2020, vol. 28, no. 2, pp. 601–608. https://doi.org/10.1109/TCST.2018.2879045

    Article  Google Scholar 

  216. Semenova, M.M., Decomposition of stability problems for linear multi-time scale systems, Mat. model. kraevye zadachi. Tr. Vseross. nauchn. konf. (Mat. Model. Boundary Value Problems. Proc. All-Russ. Sci. Conf.) (20040, Part 3, pp. 192–194.

  217. Chen, Y. and Liu, Y., Summary of singular perturbation modeling of multi-time scale power systems, 2005 IEEE/PES Transm. Distrib. Conf. & Exhib.: Asia Pac. (Dalian, China, 2005), pp. 1–4. https://doi.org/10.1109/TDC.2005.1546882. https://ieeexplore.ieee.org/document/1546882.

  218. Shen, F., Ju, P., Shahidehpour, M., Li, Z., Wang, C., and Shi, X., Singular perturbation for the dynamic modeling of integrated energy systems, IEEE Trans. Power Syst., 2020, vol. 35, no. 3, pp. 1718–1728. https://doi.org/10.1109/TPWRS.2019.2953672

    Article  Google Scholar 

  219. Yurkevich, V.D., Sintez nelineinykh nestatsionarnykh sistem upravleniya s raznotempovymi protsessami (Synthesis of Nonlinear Time-Varying Control Systems with Multi-Time Scale Processes), St. Petersburg: Nauka, 2000.

    Google Scholar 

  220. Frantsuzova, G.A., Synthesis of extremal control systems, Nauchn. Vestn. NGTU, 2011, no. 2(43), pp. 47–58.

  221. González, G.A., Barrera, N.G., Ayala, G., Padilla, J.A., and Alvarado, D.Z., Quasi-steady-state models of three timescale systems: A bond graph approach, Math. Probl. Eng., 2019, p. 9783740. https://doi.org/10.1155/2019/9783740

  222. Shimjith, S.R., Tiwari, A.P., and Bandyopadhyay, B., Lecture Notes in Control and Information Sciences. Modeling and Control of a Large Nuclear Reactor. A Three-Time-Scale Approach, Berlin–Heidelberg–New York–Dordrecht–London: Springer-Verlag, 2013. https://doi.org/10.1007/978-3-642-30589-4

  223. Sazhin, S.S., Feng, G., Heikal, M.R., Goldfarb, I., Gol’dstein, V., and Kuzmenko, G., Thermal ignition analysis of a monodisperse spray with radiation, Combustion Flame, 2001, vol. 124, no. 4, pp. 684–701. https://doi.org/10.1016/S0010-2180(00)00237-6

    Article  Google Scholar 

  224. Sobolev, V.A. and Shchepakina, E.A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike (Model Reduction and Critical Phenomena in Macrokinetics), Moscow: Fizmatlit, 2010.

    Google Scholar 

  225. Khanin, Ya.I., Osnovy dinamiki lazerov (Fundamentals of Laser Dynamics), Moscow: Nauka, Fizmatlit, 1999.

  226. Jamshidi, M., Three-stage near-optimum design of nonlinear-control processes, Proc. Inst. Electr. Eng., 1974, vol. 121, no. 8, pp. 886–892. https://doi.org/10.1049/piee.1974.0205

    Article  Google Scholar 

  227. Kubyshkin, E.P. and Khrebtyugova, O.A., A generalized solution of one initial–boundary value problem that arises in the mechanics of discrete-continuum systems, Model. Anal. Inf. Sist., 2012, vol. 19, no. 1, pp. 84–96. https://doi.org/10.18255/1818-1015-2012-1-84-96

  228. Vlakhova, A.V. and Novozhilov, I.V., On skidding of a wheeled vehicle when one of the wheels locks or slips, J. Math. Sci., 2007, vol. 146, pp. 5803–5810. https://doi.org/10.1007/s10958-007-0396-7

    Article  MathSciNet  MATH  Google Scholar 

  229. Vlakhova, A.V. and Novoderova, A.P., The skidding modeling of an apparatus with turned front wheels, Mech. Solids, 2019, vol. 54, pp. 19–38. https://doi.org/10.3103/S0025654419010023

    Article  Google Scholar 

  230. Vlakhova, A.V., Matematicheskie modeli dvizheniya kolesnykh apparatov (Mathematical Models of the Motion of Wheeled Vehicles), Moskva–Izhevsk: Izhevsk. Inst. Komp’yut. Issled., 2014.

    Google Scholar 

  231. Vlakhova, A.V., Risk assessment of flange climb derailment of a rail vehicle, Mech. Solids, 2015, vol. 50, no. 1, pp. 19–32. https://doi.org/10.3103/S0025654415010033

    Article  Google Scholar 

  232. Ghadami, S.M., Amjadifard, R., and Khaloozadeh, H., Designing SDRE-based controller for a class of nonlinear singularly perturbed systems, Int. J. Robot. Autom., 2013, vol. 4, no. 1, pp. 1–18. https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJRA- 85.

  233. Sarkar, S. and Kar, I.N., Formation of multiple groups of mobile robots: Multi-timescale convergence perspective, Nonlinear Dyn., 2016, vol. 85, pp. 2611–2627. https://doi.org/10.1007/s11071-016-2848-4

  234. Xia, G., Zhang, Y., Zhang, W., Chen, X., and Yang, H., Multi-time-scale 3-D coordinated formation control for multi-underactuated AUV with uncertainties: Design and stability analysis using singular perturbation methods, Ocean Eng., 2021, vol. 230, 109053. https://doi.org/10.1016/j.oceaneng.2021.109053

  235. Lei, M. and Li, Y., Model-based control and stability analysis of underactuated autonomous underwater vehicles via singular perturbations, J. Comput. Nonlinear Dyn., 2020, vol. 15, no. 6, p. 061006, paper no. CND-19-1446. https://doi.org/10.1115/1.4046880

  236. Ye, H., Yue, B., Li, X., and Strunz, K., Modeling and simulation of multi-scale transients for PMSG-based wind power systems, Wind Energy, 2017, vol. 20, pp. 1349–1364. https://doi.org/10.1002/we.2097

    Article  Google Scholar 

  237. Oulad Ben Zarouala, R. and Acosta, J.Á., Timescale separation via Rayleigh quotient in flexible wind turbines: A singularly perturbed approach, Nonlinear Dyn., 2019, vol. 97, pp. 2723–2738. https://doi.org/10.1007/s11071-019-05158-4

  238. Naidu, D.S. and Calise, A.J., Singular perturbations and time scales in guidance and control of aerospace systems: A survey, J. Guid. Control Dyn., 2001, vol. 24, no. 6, pp. 1057–1078. https://doi.org/10.2514/2.4830

    Article  Google Scholar 

  239. Calise, A.J., Singular perturbation methods for variational problems in aircraft flight, IEEE Trans. Autom. Control, 1976, vol. AC-21, no. 3, pp. 345–353. https://doi.org/10.1109/TAC.1976.1101221

    Article  MathSciNet  MATH  Google Scholar 

  240. Hao Yang and Hailong Pei, Two time-scale assignment with state extension for an autonomous helicopter, Asian J. Control, 2020, vol. 23, no. 4, pp. 1707–1719. https://doi.org/10.1002/asjc.2324

    Article  MathSciNet  Google Scholar 

  241. Roncero, S.E., Three-time-scale nonlinear control of an autonomous helicopter on a platform, PhD Thesis, Sevilla: Univ. Sevilla, 2011. https://doi.org/10.13140/RG.2.1.4530.8881. https://www.researchgate.net/publication/265013409_Three-Time- Scale_Nonlinear_ Control_of_an_Autonomous_Helicopter_on_a_Platform.

  242. Esteban, S., Vazquez, R., Gordillo, F., and Aracil, J., Singular Perturbation Stability Analysis for a Three-Time-Scale Autonomous Helicopter, Proc. 2nd Int. Conf. Adv. Control Optim. Dyn. Syst. (Bangalore, India, 2012).

  243. Esteban, S., Gordillo, F., and Aracil, J., Three-time scale singular perturbation control and stability analysis for an autonomous helicopter on a platform, Int. J. Robust Nonlinear Control, 2013, vol. 23, no. 12, pp. 1360–1392. https://doi.org/10.1002/rnc.2823

    Article  MathSciNet  MATH  Google Scholar 

  244. Ren, W., Jiang, B., and Yang, H., Singular perturbation-based fault-tolerant control of the air-breathing hypersonic vehicle, IEEE/ASME Trans. Mechatron., 2019, vol. 24, no. 6, pp. 2562–2571. https://doi.org/10.1109/TMECH.2019.2946645

    Article  Google Scholar 

  245. Saha, D., Valasek, J., Leshikar, C., and Reza, M.M., Multiple-timescale nonlinear control of aircraft with model uncertainties, J. Guid. Control Dyn., 2020, vol. 43, no. 3, pp. 1–17. https://doi.org/10.2514/1.G004303

    Article  Google Scholar 

  246. Garcia-Baquero, L., Esteban, S., and Raffo, G.V., Singular perturbation control for the longitudinal and lateral-directional flight dynamics of a UAV, IFAC-PapersOnLine, 2018, vol. 51, no. 12, pp. 124–129. https://doi.org/10.1016/j.ifacol.2018.07.099

    Article  Google Scholar 

  247. Esteban, S., Aracil, J., and Gordillo, F., Three-time scale singular perturbation control for a radio-control helicopter on a platform, AIAA Atmos. Flight Mech. Conf. Exhib. (San Francisco, California, 2005), 6236. https://doi.org/10.2514/6.2005-6236

  248. Hepner, S.A.R., Analysis of the planar intercept and tracking problem by application of optimal control and singular perturbation theory, Doctoral Thesis, Diss. ETH. no. 8170, Zurich: ETH, 1986. https://doi.org/10.3929/ethz-a-000409856

  249. Krupa, M., Popović, N., Kopell, N., and Rotstein, H.G., Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron, Chaos: Interdiscip. J. Nonlinear Sci., 2008, vol. 18, no. 1, p. 015106. https://doi.org/10.1063/1.2779859

  250. Nan, P., Wang, Y., Kirk, V., and Rubin, J.E., Understanding and distinguishing three-time-scale oscillations: Case study in a coupled Morris–Lecar system, SIAM J. Appl. Dyn. Syst., 2015, vol. 14, no. 3, pp. 1518–1557. https://doi.org/10.1137/140985494

    Article  MathSciNet  MATH  Google Scholar 

  251. Archibasov, A.A., Korobeinikov, A., and Sobolev, V.A., Asymptotic expansions of solutions in a singularly perturbed model of virus evolution, Comput. Math. Math. Phys., 2015, vol. 55, no. 2, pp. 240–250. https://doi.org/10.1134/S0965542515020037

    Article  MathSciNet  MATH  Google Scholar 

  252. Di Giamberardino, P. and Iacoviello, D., A linear quadratic regulator for nonlinear SIRC epidemic model, 23rd Int. Conf. Syst. Theory Control Comput. (Sinaia, Romania, 2019), pp. 733–738. https://doi.org/10.1109/ICSTCC.2019.8885727

  253. Cardin, P.T., da Silva, P.R., and Teixeira, M.A., Three time scale singular perturbation problems and nonsmooth dynamical systems, Q. Appl. Math., 2014, vol. 72, no. 4, pp. 673–687. https://doi.org/10.1090/S0033-569X-2014-01360-X

    Article  MathSciNet  MATH  Google Scholar 

  254. Brøns, M., Desroches, M., and Krupa, M., Mixed-mode oscillations due to a singular Hopf bifurcation in a forest pest model, Math. Popul. Stud.: Int. J. Math. Demogr., 2015, vol. 22, no. 2, pp. 71–79. https://doi.org/10.1080/08898480.2014.925344

  255. Gribkovskaya, I.V. and Dmitriev, M.G., Controlability in large socio-economic systems from the position of separation of motions, Teoriya aktivnykh sistem. Tr. mezhdunar. nauchno-prakt. konf. “Upravleniye bol’shimi sistemami—2011” (Theory of Active Systems. Proc. Int. Sci. Pract. Conf. “Control of Large Systems—2011”), Moscow: IPU RAN, 2011, vol. II, pp. 93–96.

  256. Jiang, J. and Lou, S.X.C., Production control of manufacturing systems: A multiple time scale approach, IEEE Trans. Autom. Control, 1994, vol. 39, no. 11, pp. 2292–2297. https://doi.org/10.1109/9.333779

    Article  MathSciNet  MATH  Google Scholar 

  257. Li, S., Shishkin, G.I., and Shishkina, L.P., Approximation of the solution and its derivative for the singularly perturbed Black–Scholes equation with nonsmooth initial data, Comput. Math. Math. Phys., 2007, vol. 47, no. 3, pp. 442–462. https://doi.org/10.1134/S0965542507030098

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to the referees of the article for providing useful information as well as to A.V. Vlakhova, N.V. Voropaeva, A.R. Danilin, M.G. Dmitriev, Yu.E. Gliklikh, V.G. Zadorozhnii, A.I. Kalinin, O.O. Kovrizhnykh, A.S. Kostenko, K.N. Kudryavtsev, D.A. Makarov, M.E. Semenov, N.T. Hoai, O.B. Tsekhan, and G. Marinoschi for helpful discussions.

Funding

The work of the first author was financially supported by the Russian Science Foundation, project no. 21-11-00202.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Kurina or M. A. Kalashnikova.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurina, G.A., Kalashnikova, M.A. Singularly Perturbed Problems with Multi-Tempo Fast Variables. Autom Remote Control 83, 1679–1723 (2022). https://doi.org/10.1134/S00051179220110017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S00051179220110017

Keywords

Navigation