Skip to main content
Log in

New Criteria for Tuning PID Controllers

  • LINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a new approach to the problem of tuning and optimizing the parameters of a PID controller based on reducing the problem to an optimization problem. In this case, the performance of the controller is evaluated by a quadratic criterion of the system output: the PID controller is tuned against the uncertainty in the initial conditions so that the system output is uniformly small; in this case, a given degree of stability of the closed-loop system is additionally guaranteed. A gradient method for finding the PID controller parameters is given. Numerous examples show that the recurrent procedure proposed is very efficient and leads to PID controllers that are quite satisfactory in terms of engineering performance indices. The article continues a series of papers by the present authors devoted to synthesizing feedback in control problems from the standpoint of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Ziegler, J.B. and Nichols, N.B., Optimum settings for automatic controllers, Trans. ASME, 1942, vol. 64, pp. 759–768.

    Google Scholar 

  2. Visioli, A., Practical PID Control, London: Springer-Verlag, 2006.

    MATH  Google Scholar 

  3. ˚Aström, K.J. and Hägglund, T., PID Controllers: Theory, Design, and Tuning, Research Triangle Park: Instrum. Soc. Am., 1995.

  4. ˚Aström, K.J. and Hägglund, T., Advanced PID Control, Research Triangle Park: Instrum. Syst. Autom. Soc., 2006.

  5. Bhattacharyya, S.P. and Keel, L.H., Linear Multivariable Control Systems, Cambridge: Cambridge Univ. Press, 2022.

    Book  MATH  Google Scholar 

  6. Wang, Q.-G., Ye, Z., Cai, W.-J., and Hang, C.-C., PID Control for Multivariable Processes, Berlin: Springer, 2008.

    MATH  Google Scholar 

  7. Blanchini, F., Lepschy, A., Miani, S., and Viaro, U., Characterization of PID and lead/lag compensators satisfying given \(H_\infty \) specifications, IEEE Trans. Autom. Control, 2004, vol. 49, no. 5, pp. 736–740.

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, S., Keel, L.H., and Bhattacharyya, S.P., PID controller design with an \(H^\infty \) criterion, IFAC-PapersOnLine, 2018, vol. 51, no. 4, pp. 400–405.

    Article  Google Scholar 

  9. Kiselev, O.N. and Polyak, B.T., Design of low-order controllers by the \(H^\infty \)-criterion and maximum-robustness performance indices, Autom. Remote Control, 1999, vol. 60, no. 3, pp. 393–402.

    MATH  Google Scholar 

  10. Gryazina, E.N., Polyak, B.T., and Tremba, A.A., Design of the low-order controllers by the \(H_\infty \) criterion: A parametric approach, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 456–466.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kalman, R.E., Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., 1960, vol. 5, no. 1, pp. 102–119.

    MathSciNet  Google Scholar 

  12. Levine, W. and Athans, M., On the determination of the optimal constant output feedback gains for linear multivariable systems, IEEE Trans. Automat. Control, 1970, vol. 15, no. 1, pp. 44–48.

    Article  MathSciNet  Google Scholar 

  13. Mäkilä, P.M. and Toivonen, H.T., Computational methods for parametric LQ problems—A survey, IEEE Trans. Autom. Control, 1987, vol. 32, no. 8, pp. 658–671.

  14. Fazel, M., Ge, R., Kakade, S., and Mesbahi, M., Global convergence of policy gradient methods for the linear quadratic regulator, Proc. 35th Int. Conf. Mach. Learn. (Stockholm, Sweden, July 10–15, 2018), vol. 80, pp. 1467–1476.

  15. Mohammadi, H., Zare, A., Soltanolkotabi, M., and Jovanović, M.R., Global exponential convergence of gradient methods over the nonconvex landscape of the linear quadratic regulator, Proc. 2019 IEEE 58th Conf. Decis. Control (Nice, France, December 11–13, 2019), pp. 7474–7479.

  16. Zhang, K., Hu, B., and Başar, T., Policy optimization for \(\mathcal H_2 \) linear control with \(\mathcal H_{\infty } \) robustness guarantee: Implicit regularization and global convergence, 2020. arXiv:1910.09496.

  17. Bu, J., Mesbahi, A., Fazel, M., and Mesbahi, M., LQR through the lens of first order methods: Discrete-time case, 2019. arXiv:1907.08921.

  18. Fatkhullin, I. and Polyak, B., Optimizing static linear feedback: Gradient method, SIAM J. Control Optim., 2021, vol. 59, no. 5, pp. 3887–3911.

    Article  MathSciNet  MATH  Google Scholar 

  19. Polyak, B.T. and Khlebnikov, M.V., Static controller synthesis for peak-to-peak gain minimization as an optimization problem, Autom. Remote Control, 2021, vol. 82, no. 9, pp. 1530–1553.

    Article  MathSciNet  MATH  Google Scholar 

  20. Polyak, B.T. and Khlebnikov, M.V., Observer-aided output feedback synthesis as an optimization problem, Autom. Remote Control, 2022, vol. 83, no. 3, pp. 303–324.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gryazina, E.N., Polyak, B.T., and Tremba, A.A., D-decomposition technique state-of-the-art, Autom. Remote Control, 2008, vol. 69, no. 12, pp. 1991–2026.

    Article  MathSciNet  MATH  Google Scholar 

  22. Shatov, D.V., Synthesis of parameters of proportional-integrating and proportional-integral-differentiating controllers for time-invariant linear objects with nonzero initial conditions, J. Comput. Syst. Sci. Int., 2023, no. 1 (in press).

  23. ˚Aström, K.J. and Hägglund, T., Benchmark systems for PID control, IFAC Proc. Vols., 2000, vol. 33, no. 4, pp. 165–166.

  24. Geem, Z.W., Kim, J.H., and Loganathan, G.V., A new heuristic optimization algorithm: Harmony search, Simulation, 2002, vol. 76, no. 2, pp. 60–68.

    Article  Google Scholar 

  25. Pham, D.T. and Sholedolu, M., The bees algorithm with attraction to global best solutions, Proc. 5th IPROMS Int. Virtual Conf. Innovative Prod. Mach. Syst. (IPROMS 2009) (Cardiff, UK, July 6–17, 2009).

  26. Karaboga, D., An idea based on honey bee swarm for numerical optimization, Tech. Rep. TR06, Erciyes Univ., 2005.

  27. Karaboga, D. and Akay, B., Proportional-integral-derivative controller design by using artificial bee colony, harmony search, and the bees algorithms, Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng., 2010, vol. 224, no. 7, pp. 869–883.

  28. Panagopoulos, H., ˚Aström, K.J., and Hägglund, T., Design of PID controllers based on constrained optimization, Proc. 1999 Am. Control Conf. (San Diego, USA, June 2–4, 1999), vol. 6, pp. 3858–3862.

  29. Li, Y., Ang, K.H., and Chong, G.C.Y., PID control system analysis and design, IEEE Control Syst. Mag., 2006, vol. 26, no. 1, pp. 32–41.

    Article  Google Scholar 

  30. Leva, A. and Papadopoulos, A.V., Tuning of event-based industrial controllers with simple stability guarantees, J. Process Control, 2013, vol. 23, pp. 1251–1260.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Science Foundation, project no. 21-71-30005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. T. Polyak or M. V. Khlebnikov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B.T., Khlebnikov, M.V. New Criteria for Tuning PID Controllers. Autom Remote Control 83, 1724–1741 (2022). https://doi.org/10.1134/S00051179220110029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S00051179220110029

Keywords

Navigation