Skip to main content
Log in

Test Signal Planning for Identifying the Aerodynamic Characteristics of Automatically Controlled Aircraft Taking into Account the Uncertainty of A Priori Data

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a method for test signal planning for identifying the aerodynamic characteristics of automatically controlled aircraft taking into account possible errors in a priori estimates of aerodynamic characteristics and the uncertainty in the initial conditions of the test maneuver. This method can be used in test signal planning problems with constraints on the admissible disturbances of the state vector of the aircraft in the test maneuver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kas’yanov, V.A. and Udartsev, E.P., Opredelenie kharakteristik vozdushnykh sudov metodami identifikatsii (Determination of Aircraft Characteristics by Identification Methods), Moscow: Mashinostroenie, 1988.

  2. Ovcharenko, V.N., Aerodinamicheskie kharakteristiki letatel’nykh apparatov: identifikatsiya po poletnym dannym (Aircraft Aerodynamics: Flight Data Identification), Moscow: LENAND, 2019.

    Google Scholar 

  3. Chubich, V.M. and Filippova, E.V., Aktivnaya parametricheskaya identifikatsiya stokhasticheskikh dinamicheskikh sistem na osnove planirovaniya eksperimenta (Active Parametric Identification of Stochastic Dynamical Systems Based on Experiment Planning), Novosibirsk: Novosirsk. Gos. Tekh. Univ., 2019.

    Google Scholar 

  4. Hosseini, B., Diepolder, J., and Holzapfel, F., Online parameter estimation and optimal input design, MMSC, 2020, pp. 128–139. https://CEUR-WS.org/vol-2783/paper-09.pdf .

  5. Lichota, P., Multi-axis inputs for identification of a reconfigurable fixed-wing UAV, Aerospace, 2020, 7. https://doi.org/10.3390/aerospace7080113

  6. Licitra, G., Bürgerc, A., Williams, P., et al., Optimal input design for autonomous aircraft, Control Eng. Pract., 2018, vol. 77, pp. 15–27.

  7. Roeser, M.S. and Fezans, N., Method for designing multi-input system identification signals using a compact time-frequency representation, CEAS Aeronaut. J., 2021, vol. 12, pp. 291–306. https://doi.org/10.1007/s13272-021-00499-6

    Article  Google Scholar 

  8. Perel’man, I.I., Experimental design in development of process models, Autom. Remote Control, 1987, vol. 48, no. 9, pp. 3–25.

    Google Scholar 

  9. Ovcharenko, V.N., Planning of identifying input signals in linear dynamic systems, Autom. Remote Control, 2001, vol. 62, no. 2, pp. 236–247.

    Article  MathSciNet  Google Scholar 

  10. Grauer, J.A. and Boucher, M., Aircraft system identification from multisine inputs and frequency responses, in AIAA Scitech 2020 Forum (Orlando. FL, USA, 2020). https://doi.org/10.2514/6.2020-0287

  11. Belokon’, S.A., Zolotukhin, Yu.N., and Filippov, M.N., Method for generating test signals for estimating the aerodynamic parameters of an aircraft, Avtometriya, 2017, vol. 53, no. 4, pp. 59–65.

    Google Scholar 

  12. Gusev, M.I., Experiment design in guaranteed identification, Autom. Remote Control, 2007, vol. 68, no. 11, pp. 1945–1958.

    Article  MathSciNet  Google Scholar 

  13. Ivchenko, G.I. and Medvedev, Yu.I., Matematicheskaya statistika: uchebn. posobie dlya vtuzov (Mathematical Statistics: a Handbook for Higher Technical Educational Universities), Moscow: Vyssh. Shkola, 2010.

    Google Scholar 

  14. Pashkovskii, I.M., Leonov, V.A., and Poplavskii, B.K., Letnye ispytaniya samoletov i obrabotka rezul’tatov ispytanii (Flight Testing of Aircraft and Processing of Test Results), Moscow: Mashinostroenie, 1985.

    Google Scholar 

  15. Novitskii, P.V. and Zograf, I.A., Otsenka pogreshnostei rezul’tatov izmerenii (Estimation of Errors in Measurement Results), Leningrad: Energoatomizdat, 1991.

    Google Scholar 

  16. Grigor’ev, N.V., Active identification of aerodynamic characteristics under constraints on the aircraft state vector and uncertainty of a priori data, Aviakosm. Tekh. Tekhnol., 1999, no. 3, pp. 56–60.

  17. Grigor’ev, N.V. and Nesterov, V.E., Active identification of the ADC of the returned missile unit in flight conditions on a scalable demonstrator, Aviakosm. Tekh. Tekhnol., 2014, no. 1, pp. 47–56.

  18. Powell, M.J.D., A tolerant algorithm for linearly constrained optimization calculations, Math. Program., 1989, no. 45, pp. 547–566.

  19. Pshenichnyi, B.N. and Danilin, Yu.M., Chislennye metody v ekstremal’nykh zadachakh (Numerical Methods in Extremal Problems), Moscow: Nauka, 1978.

    Google Scholar 

  20. Gupta, N.K. and Hall, W.E., Jr., Input Design for Identification of Aircraft Stability and Control Derivatives, NASA CR-2493, 1975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Grigor’ev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, N.V. Test Signal Planning for Identifying the Aerodynamic Characteristics of Automatically Controlled Aircraft Taking into Account the Uncertainty of A Priori Data. Autom Remote Control 83, 600–612 (2022). https://doi.org/10.1134/S0005117922040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922040063

Keywords

Navigation