Skip to main content
Log in

A Multivariate Chebyshev Bound of the Selberg Form

  • STOCHASTIC SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The least upper bound for the probability that a random vector with fixed mean and covariance will be outside the ball is found. This probability bound is determined by solving a scalar equation and, in the case of identity covariance matrix, is given by an analytical expression, which is a multivariate generalization of the Selberg bound. It is shown that at low probability levels, it is more typical when the bound is given by the new expression if compared with the case when it coincides with the right-hand side of the well-known Markov inequality. The obtained result is applied to solving the problem of hypothesis testing by using an alternative with uncertain distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lin, F., Fang, X., and Gao, Z., Distributionally robust optimization: a review on theory and applications, Numer. Algebra Control & Optim., 2022, vol. 12, no. 1, pp. 159–212.

    Article  MathSciNet  Google Scholar 

  2. Karlin, S. and Studden, W.J., Tchebycheff Systems: with Applications in Analysis and Statistics, New York: Wiley-Interscience, 1966.

    MATH  Google Scholar 

  3. Krein, M.G. and Nudelman, A.A., The Markov Moment Problem and Extremal Problems. Translation of Mathematical Monographs, Providence, R.I.: Am. Math. Soc., 1977, vol. 50.

  4. Marshall, A.W. and Olkin, I., Multivariate Chebyshev inequalities, Ann. Math. Stat., 1960, vol. 31, no. 4, pp. 1001–1014.

    Article  MathSciNet  Google Scholar 

  5. El Ghaoui, L., Oks, M., and Oustry, F., Worst-case value-at-risk and robust portfolio optimization: a conic programming approach, Oper. Res., 2003, vol. 51, no. 4, pp. 543–556.

    Article  MathSciNet  Google Scholar 

  6. Popescu, I., Robust mean-covariance solutions for stochastic optimization and applications, Oper. Res., 2007, vol. 55, no. 1, pp. 98–112.

    Article  MathSciNet  Google Scholar 

  7. Pankov, A.R. and Semenikhin, K.V., Minimax estimation by probabilistic criterion, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 430–445.

    Article  MathSciNet  Google Scholar 

  8. Semenikhin, K.V., Minimax nature of the linear estimates of the indefinite stochastic vector from the generalized probabilistic criteria, Autom. Remote Control, 2007, vol. 68, no. 11, pp. 1970–1985.

    Article  MathSciNet  Google Scholar 

  9. Delage, E. and Ye, Y., Distributionally robust optimization under moment uncertainty with application to data-driven problems, Oper. Res., 2010, vol. 58, pp. 595–612.

    Article  MathSciNet  Google Scholar 

  10. Zymler, S., Kuhn, D., and Rustem, B., Distributionally robust joint chance constraints with second-order moment information, Math. Programming, 2013, vol. 137, pp. 167–198.

    Article  MathSciNet  Google Scholar 

  11. Kitahara, T., Mizuno, S., and Nakata, K., Quadratic and convex minimax classification problems, J. Oper. Res. Soc. Jpn., 2008, vol. 51, no. 2, pp. 191–201.

    MathSciNet  MATH  Google Scholar 

  12. Stellato, B., Van Parys, B.P.G., and Goulart, P.J., Multivariate Chebyshev inequality with estimated mean and variance, Am. Stat., 2017, vol. 71, no. 2, pp. 123–127.

    Article  MathSciNet  Google Scholar 

  13. Vandenberghe, L., Boyd, S., and Comanor, K., Generalized Chebyshev bounds via semidefinite programming, SIAM Rev., 2007, vol. 49, no. 1, pp. 52–64.

    Article  MathSciNet  Google Scholar 

  14. Csiszar, V., Fegyverneki, T., and Mori, T.F., Explicit multivariate bounds of Chebyshev type, Ann. Univ. Sci. Budapest Sec. Comput., 2014, vol. 42, pp. 109–125.

    MathSciNet  MATH  Google Scholar 

  15. Csiszar, V. and Mori, T.F., A Bienaymé–Chebyshev inequality for scale mixtures of the multivariate normal distribution, Math. Inequalities & Appl., 2009, vol. 12, no. 4, pp. 839–844.

    Article  MathSciNet  Google Scholar 

  16. Bertsimas, D. and Popescu, I., Optimal inequalities in probability theory: a convex optimization approach, SIAM J. Optim., 2005, vol. 15, no. 3, pp. 780–804.

    Article  MathSciNet  Google Scholar 

  17. Van Parys, B.P.G., Goulart, P.J., and Kuhn, D., Generalized Gauss inequalities via semidefinite programming, Math. Programming, 2016, vol. 156, pp. 271–302.

    Article  MathSciNet  Google Scholar 

  18. Barmish, B.R. and Lagoa, C.M., The uniform distribution: a rigorous justification for its use in robustness analysis, Math. Control Signals Syst., 1997, vol. 10, pp. 203–222.

    Article  MathSciNet  Google Scholar 

  19. Kibzun, A.I., On the worst-case distribution in stochastic optimization problems with probability function, Autom. Remote Control, 1998, vol. 59, no. 11, pp. 1587–1597.

    MathSciNet  MATH  Google Scholar 

  20. Kan, Yu.S., On the justification of the uniformity principle in the optimization of a probability performance index, Autom. Remote Control, 2000, vol. 61, no. 1, pp. 50–64.

    MathSciNet  MATH  Google Scholar 

  21. Sturm, J.F., Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Software, 1999, vol. 11, no. 12, pp. 625–653.

    Article  MathSciNet  Google Scholar 

  22. Grant, M.C. and Boyd S.P., The CVX Users’ Guide. Release 2.1, CVX Research, Inc., 2018. Available at http://cvxr.com/cvx .

  23. Platonov, E.N. and Semenikhin, K.V., Methods for minimax estimation under elementwise covariance uncertainty, Autom. Remote Control, 2016, vol. 77, no. 5, pp. 817–838.

    Article  MathSciNet  Google Scholar 

  24. Albert, A., Regression and the Moore–Penrose Pseudoinverse, New York: Academic Press, 1972.

    MATH  Google Scholar 

  25. Ioffe, A.D. and Tihomirov, V.M., Theory of Extremal Problems, New York: Elsevier, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Arkhipov or K. V. Semenikhin.

Additional information

Translated by The Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, A.S., Semenikhin, K.V. A Multivariate Chebyshev Bound of the Selberg Form. Autom Remote Control 83, 1180–1199 (2022). https://doi.org/10.1134/S0005117922080033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922080033

Keywords

Navigation