Skip to main content
Log in

Suppressing Exogenous Disturbances in a Discrete-Time Control System As an Optimization Problem

  • TOPICAL ISSUE
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach to suppressing bounded exogenous disturbances in a linear discrete-time control system by a static state- or output-feedback control law. The approach is based on reducing the original problem to a nonconvex matrix optimization problem with the gain matrix as one variable. The latter problem is solved by the gradient method; its convergence is theoretically justified for several important special cases. An example is provided to demonstrate the effectiveness of the iterative procedure proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Notes

  1. No doubt, this technical assumption can be relaxed; for the time being, the objective is to establish simple and visual results.

  2. In the sense of the second derivative in a direction.

REFERENCES

  1. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  Google Scholar 

  2. Nazin, S.A., Polyak, B.T., and Topunov, M.V., Rejection of Bounded Exogenous Disturbances by the Method of Invariant Ellipsoids, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 467–486.

    Article  MathSciNet  Google Scholar 

  3. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmu-shcheniyakh: Tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subjected to Exogenous Disturbances: The Technique of Linear Matrix Inequalities), Moscow: LENAND, 2014.

  4. Kalman, R.E., Contributions to the Theory of Optimal Control, Boletin de la Sociedad Matematica Mexicana, 1960, vol. 5, no. 1, pp. 102–119.

    MathSciNet  Google Scholar 

  5. Levine, W. and Athans, M., On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems, IEEE Trans. Automat. Control, 1970, vol. 15, no. 1, pp. 44–48.

    Article  MathSciNet  Google Scholar 

  6. Polyak, B.T. and Khlebnikov, M.V., Static Controller Synthesis for Peak-to-Peak Gain Minimization as an Optimization Problem, Autom. Remote Control, 2021, vol. 82, no. 9, pp. 1530–1553.

    Article  MathSciNet  Google Scholar 

  7. Khlebnikov, M.V., A Comparison of Guaranteeing and Kalman Filters, Autom. Remote Control, 2023, vol. 84, no. 4, pp. 434–459.

    Article  MathSciNet  Google Scholar 

  8. Polyak, B., Introduction to Optimization, Optimization Software, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Khlebnikov.

Additional information

This paper was recommended for publication by V.V. Glumov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Proof of Lemma 1. Consider a sequence of stabilizing controllers {Kj} ∈ \(\mathcal{S}\) such that KjK\(\partial \mathcal{S}\), i.e., ρ(A + BKC) = 1. In other words, for any ε > 0 there exists a number N = N(ε) such that

$$\left| {\rho (A + B{{K}_{j}}C) - \rho (A + BKC)} \right| = 1 - \rho (A - B{{K}_{j}}C) < \varepsilon $$

for all j \( \geqslant \) N(ε).

Let Pj be the solution of Eq. (5) associated with the controller Kj:

$$\frac{1}{{{{\alpha }_{j}}}}(A + B{{K}_{j}}C){{P}_{j}}{{(A + B{{K}_{j}}C)}^{{\text{T}}}} - {{P}_{j}} + \frac{1}{{1 - {{\alpha }_{j}}}}D{{D}^{{\text{T}}}} = 0.$$

Also, let Yj be the solution of the dual discrete Lyapunov equation

$$\frac{1}{{{{\alpha }_{j}}}}{{(A + B{{K}_{j}}C)}^{{\text{T}}}}{{Y}_{j}}(A + B{{K}_{j}}C) - {{Y}_{j}} + {{C}_{1}}C_{1}^{{\text{T}}} = 0.$$

Using ([6], Lemmas A.1 and A.2) and ([7], Lemma A.1.2), we have

$$f({{L}_{j}}) = \operatorname{tr} {{C}_{1}}{{P}_{j}}C_{1}^{{\text{T}}} + \rho \left\| {{{K}_{j}}} \right\|_{F}^{2}\; \geqslant \;\operatorname{tr} {{P}_{j}}{{C}_{1}}C_{1}^{{\text{T}}} = \operatorname{tr} \left( {{{Y}_{j}}\frac{1}{{1 - {{\alpha }_{j}}}}D{{D}^{{\text{T}}}}} \right)$$
$$ \geqslant \;\frac{1}{{1 - {{\alpha }_{j}}}}{{\lambda }_{{\min }}}({{Y}_{j}})\left\| D \right\|_{F}^{2}\; \geqslant \;\frac{1}{{1 - {{\alpha }_{j}}}}\frac{{{{\lambda }_{{\min }}}({{C}_{1}}C_{1}^{{\text{T}}})}}{{1 - \sigma _{{\min }}^{2}(A + B{{K}_{j}}C)}}\left\| D \right\|_{F}^{2}$$
$$ \geqslant \;\frac{1}{{1 - {{\rho }^{2}}(A + B{{K}_{j}}C)}}\frac{{{{\lambda }_{{\min }}}({{C}_{1}}C_{1}^{{\text{T}}})}}{{1 - \sigma _{{\min }}^{2}(A + B{{K}_{j}}C)}}\left\| D \right\|_{F}^{2}$$
$$ \geqslant \;\frac{1}{\varepsilon }\frac{1}{{1 + \rho (A + B{{K}_{j}}C)}}\frac{{{{\lambda }_{{\min }}}({{C}_{1}}C_{1}^{{\text{T}}})}}{{1 - \sigma _{{\min }}^{2}(A + B{{K}_{j}}C)}}\left\| D \right\|_{F}^{2}\xrightarrow[{\varepsilon \to 0}]{} + \infty $$

since ρ2(A + BKjC) < αj < 1.

On the other hand,

$$f({{K}_{j}}) = \operatorname{tr} {{C}_{1}}{{P}_{j}}C_{1}^{{\text{T}}} + \rho \left\| {{{K}_{j}}} \right\|_{F}^{2}\; \geqslant \;\rho \left\| {{{K}_{j}}} \right\|_{F}^{2}\; \geqslant \;\rho {{\left\| {{{K}_{j}}} \right\|}^{2}}\xrightarrow[{\left\| {{{K}_{j}}} \right\| \to + \infty }]{} + \infty .$$

The proof of Lemma 1 is complete.

Proof of Lemma 2. Differentiation with respect to a is performed in accordance with the results of Section 2, with A replaced by A + BKC.

We add the increment ΔK for K in Eq. (5) and denote the corresponding increment of P by ΔP:

$$\frac{1}{\alpha }(A + B(K + \Delta K)C)(P + \Delta P){{(A + B(K + \Delta K)C)}^{{\text{T}}}} - (P + \Delta P) + \frac{1}{{1 - \alpha }}D{{D}^{{\text{T}}}} = 0.$$

Leaving the notation ΔP for the principal part of the increment, we have

$$\begin{gathered} \frac{1}{\alpha }\left( {(A + BKC)P{{{(A + BKC)}}^{{\text{T}}}} + B\Delta KCP{{{(A + BKC)}}^{{\text{T}}}}} \right. \\ \left. { + \;(A + BKC)P{{{(B\Delta KC)}}^{{\text{T}}}} + (A + BKC)\Delta P{{{(A + BKC)}}^{{\text{T}}}}} \right) \\ - \;(P + \Delta P) + \frac{1}{{1 - \alpha }}D{{D}^{{\text{T}}}} = 0. \\ \end{gathered} $$

Subtracting Eq. (5) from this equation gives

$$\begin{gathered} \frac{1}{\alpha }(A + BKC)\Delta P{{(A + BKC)}^{{\text{T}}}} - \Delta P \\ + \;\frac{1}{\alpha }\left( {(A + BKC)P{{{(B\Delta KC)}}^{{\text{T}}}} + B\Delta KCP{{{(A + BKC)}}^{{\text{T}}}}} \right) = 0. \\ \end{gathered} $$
(A.1)

The increment of f(K) is calculated by linearizing the corresponding terms:

$$\begin{gathered} \Delta f(K) = f(K) - f(K + \Delta K) \\ = \operatorname{tr} {{C}_{1}}(P + \Delta P)C_{1}^{{\text{T}}} + \rho \left\| {K + \Delta K} \right\|_{F}^{2} - \left( {\operatorname{tr} {{C}_{1}}PC_{1}^{{\text{T}}} + \rho \left\| K \right\|_{F}^{2}} \right) \\ = \operatorname{tr} {{C}_{1}}\Delta PC_{1}^{{\text{T}}} + \rho \operatorname{tr} {{K}^{{\text{T}}}}\Delta K + \rho \operatorname{tr} {{(\Delta K)}^{{\text{T}}}}K = \operatorname{tr} \Delta PC_{1}^{{\text{T}}}{{C}_{1}} + 2\rho \operatorname{tr} {{K}^{{\text{T}}}}\Delta K. \\ \end{gathered} $$

Due to [6, Lemma A.1], from the dual equations (A.1) and (9) it follows that

$$\begin{gathered} \Delta f(K) = 2\operatorname{tr} Y\frac{1}{\alpha }B\Delta KCP{{(A + BKC)}^{{\text{T}}}} + 2\rho \operatorname{tr} {{K}^{{\text{T}}}}\Delta K \\ = 2\operatorname{tr} \left( {\rho {{K}^{{\text{T}}}} + \frac{1}{\alpha }CP{{{(A + BKC)}}^{{\text{T}}}}YB} \right)\Delta K \\ = 2\left\langle {\rho K + \frac{1}{\alpha }{{B}^{{\text{T}}}}Y(A + BKC)P{{C}^{{\text{T}}}},\Delta K} \right\rangle . \\ \end{gathered} $$

Thus, we arrive at (7). The proof of Lemma 2 is complete.

Proof of Lemma 3. The value

$$\nabla _{K}^{2}f(K,\alpha )[E,E] = \left\langle {\nabla _{K}^{2}f(K,\alpha )[E],E} \right\rangle $$

is calculated by differentiating \({{\nabla }_{K}}f\)(K, α)[E] = \(\left\langle {{{\nabla }_{K}}f(K,\alpha ),E} \right\rangle \) in the direction E\({{\mathbb{R}}^{{p \times l}}}\).

For this purpose, linearizing the corresponding terms, we calculate the increment of \({{\nabla }_{K}}f\)(K, α)[E] in the direction E:

$$\begin{gathered} \Delta {{\nabla }_{K}}f(K,\alpha )[E] = 2\left( {\rho (K + \delta E) + \frac{1}{\alpha }{{B}^{{\text{T}}}}(Y + \Delta Y)(A + B(K + \delta E)C)(P + \Delta P){{C}^{{\text{T}}}}} \right) \\ - \;2\left( {\rho K + \frac{1}{\alpha }{{B}^{{\text{T}}}}Y(A + BKC)P{{C}^{{\text{T}}}}} \right) \\ = 2\delta \left( {\rho E + \frac{1}{\alpha }{{B}^{{\text{T}}}}(YBECP + Y{\kern 1pt} '(K)[E](A + BKC)P + Y(A + BKC)P{\kern 1pt} '(K)[E]){{C}^{{\text{T}}}}} \right), \\ \end{gathered} $$

where

$$\Delta P = P(K + \delta E) - P(K) = \delta P{\kern 1pt} '(K)[E],$$
$$\Delta Y = Y(K + \delta E) - Y(K) = \delta Y{\kern 1pt} '(K)[E].$$

Thus, with P ' = P '(K)[E] and Y  ' = Y  '(K)[E], we have

$$\begin{gathered} \frac{1}{2}\nabla _{K}^{2}f(K,\alpha )[E,E] \\ = \left\langle {\rho E + \frac{1}{\alpha }{{B}^{{\text{T}}}}(YBECP + Y{\kern 1pt} '(A + BKC)P + Y(A + BKC)P{\kern 1pt} '){{C}^{{\text{T}}}},E} \right\rangle . \\ \end{gathered} $$

Furthermore, P = P(K) is the solution of the discrete Lyapunov equation (5). We write it in increments in the direction E:

$$\frac{1}{\alpha }(A + B(K + \delta E)C)(P + \delta P{\kern 1pt} '){{(A + B(K + \delta E)C)}^{{\text{T}}}} - (P + \delta P{\kern 1pt} ') + \frac{1}{{1 - \alpha }}D{{D}^{{\text{T}}}} = 0$$

or

$$\begin{gathered} \frac{1}{\alpha }\left( {(A + BKC)P{{{(A + BKC)}}^{{\text{T}}}} + (A + BKC)\delta P{\kern 1pt} '{{{(A + BKC)}}^{{\text{T}}}}} \right. \\ \left. { + \;(A + BKC)P{{{(B\delta EC)}}^{{\text{T}}}} + B\delta ECP{{{(A + BKC)}}^{{\text{T}}}}} \right) \\ - \;(P + \delta P{\kern 1pt} ') + \frac{1}{{1 - \alpha }}D{{D}^{{\text{T}}}} = 0. \\ \end{gathered} $$

In view of (5), this expression yields Eq. (10).

Similarly, Y = Y(K) is the solution of the discrete Lyapunov equation (9). We write it in increments in the direction E:

$$\frac{1}{\alpha }{{(A + B(K + \delta E)C)}^{{\text{T}}}}(Y + \delta Y{\kern 1pt} ')(A + B(K + \delta E)C) - (Y + \delta Y{\kern 1pt} ') + C_{1}^{{\text{T}}}{{C}_{1}} = 0$$

or

$$\begin{gathered} \frac{1}{\alpha }\left( {{{{(A + BKC)}}^{{\text{T}}}}Y(A + BKC) + {{{(A + BKC)}}^{{\text{T}}}}\delta Y{\kern 1pt} '(A + BKC)} \right. \\ \left. { + \;{{{(A + BKC)}}^{{\text{T}}}}YB\delta EC + {{{(B\delta EC)}}^{{\text{T}}}}Y(A + BKC)} \right) - (Y + \delta Y{\kern 1pt} ') + C_{1}^{{\text{T}}}{{C}_{1}} = 0. \\ \end{gathered} $$

Due to (9), we obtain

$$\begin{gathered} \frac{1}{\alpha }{{(A + BKC)}^{{\text{T}}}}Y{\kern 1pt} '(A + BKC) - Y{\kern 1pt} ' \\ + \;\frac{1}{\alpha }\left( {{{{(A + BKC)}}^{{\text{T}}}}YBEC + {{{(BEC)}}^{{\text{T}}}}Y(A + BKC)} \right) = 0. \\ \end{gathered} $$
(A.2)

From (10) and (A.2) it follows that

$$\operatorname{tr} P{\kern 1pt} '{{(A + BKC)}^{{\text{T}}}}YBEC = \operatorname{tr} Y{\kern 1pt} '{\kern 1pt} BECP{{(A + BKC)}^{{\text{T}}}},$$

so

$$\frac{1}{2}\nabla _{K}^{2}f(K,\alpha )[E,E] = \rho \left\langle {E,E} \right\rangle + \frac{1}{\alpha }\left\langle {{{B}^{{\text{T}}}}YBECP{{C}^{{\text{T}}}},E} \right\rangle + \frac{2}{\alpha }\left\langle {{{B}^{{\text{T}}}}Y(A + BKC)P{\kern 1pt} '{\kern 1pt} {{C}^{{\text{T}}}},E} \right\rangle .$$

The proof of Lemma 3 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikov, M.V. Suppressing Exogenous Disturbances in a Discrete-Time Control System As an Optimization Problem. Autom Remote Control 84, 1088–1097 (2023). https://doi.org/10.1134/S0005117923100053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117923100053

Keywords:

Navigation