Abstract
For a simplest mathematical model of a stock market, the problem of optimal distribution of investments among different securities (stocks, bonds, etc.) is considered. Our results, which are obtained in terms of algorithmic complexity, allow to discuss heuristically the properties of sufficiently complex security portfolios in the conditions of daily changing return rates. All considerations are given in the combinatorial framework and do not use any probabilistic models.
Similar content being viewed by others
References
Jaynes, E.T., Papers on Probability, Statistics, and Statistical Physics, Dordrecht: Kluwer, 1989.
Cover, T.M. and Thomas, J.A., Elements of Information Theory. New York: Wiley, 1991.
Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memorgless Systems, Budapest: Akademiai Kiado, 1981. Translated under the title Teoriga informatsii: teoremy kodirovaniya dlya diskretnykh sistem bez pamgati, Moscow: Muir, 1985.
Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika, Part 1, Moscow: Nauka, 1976. Translated under the title Statistical Physics, vol. 1, Oxford, New York: Pergamon, 1980.
V’yugin, V.V. and Maslov, V.P., Concentration Theorems for Entropy and Free Energy, Probl. Peredachi Inf., 2005, vol. 41, no. 2, pp. 72–88 [Probl. Inf. Trans. (Engl. Transl.), 2005, vol. 41, no. 2, pp. 134–149].
Shafer, G. and Vovk, V., Probability and Finance: It’s Only a Game!. New York: Wiley, 2001.
Maslov, V.P., Integral Equations and Phase Transitions in Probability Games. Analogy with Statistical Physics, Teor. Veroyatn. Primen., 2003, vol. 48, no. 2, pp. 403–410 [Theory Probab. Appl. (Engl. Transl.), 2003, vol. 48, no. 2, pp. 359–367].
Künzi, H.P. and Krelle, W., Nichtlineare Programmierung, Berlin: Springer, 1962. Translated under the titles Nelineinoe programmirovanie. Moscow: Sov. Radio, 1965; and Nonlinear Programming. Waltham: Blaisdell, 1966.
Kolmogorov, A.N., Three Approaches to the Quantitative Definition of Information. Probl. Peredachi Inf., 1965, vol. 4, no. 1, pp. 3–11. [Probl. Inf. Trans. Engl. Transl.), 1965, vol. 1, no. 1, pp. 1–7)].
Uspensky, V.A., Semenov, A.L., and Shen’, A.Kh., Can an Individual Sequence of Zeros and Ones Be Random?, Uspekhi Mat. Nauk. 1990, vol. 45, no. 1, pp. 105–162. [Russion Math. Surveys (Engl. Transl.), 1990, vol. 15, no. 1, pp. 121–189].
Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications, New York: Springer, 1997, 2nd ed.
Kolmogorov, A.N. Combinatorial Foundations of Information Theory and the Calculus of Probabilities, Uspekhi Mat. Nauk. 1983, vol. 38, no. 4, pp. 27–36 [Russian Math. Surveys (Engl. Transl.), 1983, vol. 38, no. 4, pp. 29–40].
Author information
Authors and Affiliations
Additional information
Original Russian Text © V.V. V’yugin, V.P. Maslov, 2006, published in Problemy Peredachi Informatsii, 2006, Vol. 42, No. 3, pp. 97–108.
Supported in part by the Russian Foundation for Basic Research, project no. 06-01-00122.
Rights and permissions
About this article
Cite this article
V.’yugin, V.V., Maslov, V.P. Distribution of investments in the stock market, information types, and algorithmic complexity. Probl Inf Transm 42, 251–261 (2006). https://doi.org/10.1134/S0032946006030082
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1134/S0032946006030082