Skip to main content
Log in

Distribution of investments in the stock market, information types, and algorithmic complexity

  • Large Systems
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

For a simplest mathematical model of a stock market, the problem of optimal distribution of investments among different securities (stocks, bonds, etc.) is considered. Our results, which are obtained in terms of algorithmic complexity, allow to discuss heuristically the properties of sufficiently complex security portfolios in the conditions of daily changing return rates. All considerations are given in the combinatorial framework and do not use any probabilistic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaynes, E.T., Papers on Probability, Statistics, and Statistical Physics, Dordrecht: Kluwer, 1989.

    MATH  Google Scholar 

  2. Cover, T.M. and Thomas, J.A., Elements of Information Theory. New York: Wiley, 1991.

    MATH  Google Scholar 

  3. Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memorgless Systems, Budapest: Akademiai Kiado, 1981. Translated under the title Teoriga informatsii: teoremy kodirovaniya dlya diskretnykh sistem bez pamgati, Moscow: Muir, 1985.

    Google Scholar 

  4. Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika, Part 1, Moscow: Nauka, 1976. Translated under the title Statistical Physics, vol. 1, Oxford, New York: Pergamon, 1980.

    MATH  Google Scholar 

  5. V’yugin, V.V. and Maslov, V.P., Concentration Theorems for Entropy and Free Energy, Probl. Peredachi Inf., 2005, vol. 41, no. 2, pp. 72–88 [Probl. Inf. Trans. (Engl. Transl.), 2005, vol. 41, no. 2, pp. 134–149].

    MathSciNet  Google Scholar 

  6. Shafer, G. and Vovk, V., Probability and Finance: It’s Only a Game!. New York: Wiley, 2001.

    Book  Google Scholar 

  7. Maslov, V.P., Integral Equations and Phase Transitions in Probability Games. Analogy with Statistical Physics, Teor. Veroyatn. Primen., 2003, vol. 48, no. 2, pp. 403–410 [Theory Probab. Appl. (Engl. Transl.), 2003, vol. 48, no. 2, pp. 359–367].

    MATH  Google Scholar 

  8. Künzi, H.P. and Krelle, W., Nichtlineare Programmierung, Berlin: Springer, 1962. Translated under the titles Nelineinoe programmirovanie. Moscow: Sov. Radio, 1965; and Nonlinear Programming. Waltham: Blaisdell, 1966.

    MATH  Google Scholar 

  9. Kolmogorov, A.N., Three Approaches to the Quantitative Definition of Information. Probl. Peredachi Inf., 1965, vol. 4, no. 1, pp. 3–11. [Probl. Inf. Trans. Engl. Transl.), 1965, vol. 1, no. 1, pp. 1–7)].

    MathSciNet  Google Scholar 

  10. Uspensky, V.A., Semenov, A.L., and Shen’, A.Kh., Can an Individual Sequence of Zeros and Ones Be Random?, Uspekhi Mat. Nauk. 1990, vol. 45, no. 1, pp. 105–162. [Russion Math. Surveys (Engl. Transl.), 1990, vol. 15, no. 1, pp. 121–189].

    MathSciNet  Google Scholar 

  11. Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and Its Applications, New York: Springer, 1997, 2nd ed.

    MATH  Google Scholar 

  12. Kolmogorov, A.N. Combinatorial Foundations of Information Theory and the Calculus of Probabilities, Uspekhi Mat. Nauk. 1983, vol. 38, no. 4, pp. 27–36 [Russian Math. Surveys (Engl. Transl.), 1983, vol. 38, no. 4, pp. 29–40].

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. V’yugin, V.P. Maslov, 2006, published in Problemy Peredachi Informatsii, 2006, Vol. 42, No. 3, pp. 97–108.

Supported in part by the Russian Foundation for Basic Research, project no. 06-01-00122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

V.’yugin, V.V., Maslov, V.P. Distribution of investments in the stock market, information types, and algorithmic complexity. Probl Inf Transm 42, 251–261 (2006). https://doi.org/10.1134/S0032946006030082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946006030082

Keywords

Navigation