Skip to main content
Log in

An extension theorem for arcs and linear codes

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We prove the following generalization to the extension theorem of Hill and Lizak: For every nonextendable linear [n, k, d] q code, q = p s, (d,q) = 1, we have

$$\sum\limits_{i\not \equiv 0,d(\bmod q)} {A_i > q^{k - 3} r(q),} $$

where q + r(q) + 1 is the smallest size of a nontrivial blocking set in PG(2, q). This result is applied further to rule out the existence of some linear codes over \(\mathbb{F}_4 \) meeting the Griesmer bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heise, W. and Quattrocchi, P., Informations-und Codierungstheorie: mathematische Grundlagen der Daten-Kompression und-Sicherung in diskreten Kommunikationssystemen, Berlin: Springer, 1995, 3rd ed.

    Google Scholar 

  2. Hill, R., A First Course in Coding Theory, Oxford: Clarendon; New York: Oxford Univ. Press, 1986.

    MATH  Google Scholar 

  3. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.

    MATH  Google Scholar 

  4. V.S. Pless, W.C. Huffman, R.A. Brualdi, An Introduction to Algebraic Codes, Handbook of Coding Theory, Pless, V.S. and Huffman, W.C., Eds., Amsterdam: Elsevier, 1998, pp. 3–139.

    Google Scholar 

  5. Hirschfeld, J.W.P., Projective Geometries over Finite Fields, Oxford: Clarendon; New York: Oxford Univ. Press, 1998, 2nd ed.

    MATH  Google Scholar 

  6. Hirschfeld, J.W.P. and Storme, L., The Packing Problem in Statistics, Coding Theory, and Finite Projective Spaces, Finite Geometries, Proc. 4th Isle of Thorns Conf., Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., and Thas, J.A., Eds., Dordrecht: Kluwer, 2001, pp. 201–246.

    Google Scholar 

  7. Landjev, I., Linear Codes over Finite Fields and Finite Projective Geometries, Discrete Math., 2000, vol. 213, no. 1–3, pp. 211–244.

    Article  MathSciNet  Google Scholar 

  8. Hill, R. and Lizak, P., Extensions of Linear Codes, in Proc. Int. Symp. on Information Theory, Canada, 1995, p. 345.

  9. Hill, R., An Extension Theorem for Linear Codes, Des. Codes Cryptogr., 1999, vol. 17, no. 1–3, pp. 151–157.

    Article  MathSciNet  Google Scholar 

  10. Simonis, J., Extensions of Linear Codes, in Proc. 7th Int. Workshop on Algebraic and Combinatorial Coding Theory, Bansko, Bulgaria, 2000, pp. 279–282.

  11. Maruta, T., On the Extendability of Linear Codes, Finite Fields Appl., 2001, vol. 7, no. 2, pp. 350–354.

    Article  MathSciNet  Google Scholar 

  12. Dodunekov, S. and Simonis, J., Codes and Projective Multisets, Electronic J. Combin., 1998, vol. 5, no. 1, Research Paper R37.

  13. Honold, Th. and Landjev, I., Linear Codes over Finite Chain Rings, Electronic J. Combin., 2000, vol. 7, no. 1, Research Paper R11.

  14. Bose, R.C. and Burton, R.C., A Characterization of Flat Spaces in a Finite Geometry and the Uniqueness of the Hamming and the MacDonald Codes, J. Combin. Theory, 1966, vol. 1, pp. 96–104.

    MathSciNet  Google Scholar 

  15. Beutelspacher, A., Blocking Sets and Partial Spreads in Finite Projective Spaces, Geom. Dedicata, 1980, vol. 9, no. 4, pp. 130–157.

    Article  MathSciNet  Google Scholar 

  16. Heim, U., On t-Blocking Sets in Projective Spaces, unpublished manuscript, 1994.

  17. Landjev, I., The Geometric Approach to Linear Codes, Finite Geometries, Proc. 4th Isle of Thorns Conf., Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., and Thas, J.A., Eds., Dordrecht: Kluwer, 2001, pp. 247–257.

    Google Scholar 

  18. Ward, H.N., Divisibility of Codes Meeting the Griesmer Bound, J. Combin. Theory, Ser. A, 1998, vol. 83, no. 1, pp. 79–93.

    Article  MathSciNet  Google Scholar 

  19. Ward, H.N., A Sequence of Unique Quaternary Griesmer Codes, Des. Codes Cryptogr., 2004, vol. 33, no. 1, pp. 71–85.

    Article  MathSciNet  Google Scholar 

  20. Disset, L., Combinatorial and Computational Aspects of Finite Geometries, PhD Thesis, Univ. of Toronto, 1999.

  21. Ball, S., Hill, R., Landjev, I., and Ward, H., On (q 2 + q + 2, q + 2)-Arcs in the Projective Plane PG(2, q), Des. Codes Cryptogr., 2001, vol. 24, no. 2, pp. 205–224.

    Article  MathSciNet  Google Scholar 

  22. Hamada, N. and Maruta, T., A Survey of Recent Results on Optimal Codes and Minihypers, submitted for publication in Discrete Math.

  23. Landjev, I. and Maruta, T., On the Minimum Length of Quaternary Linear Codes of Dimension Five, Discrete Math., 1999, vol. 202, no. 1–3, pp. 145–161.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I. Landjev, A. Rousseva, 2006, published in Problemy Peredachi Informatsii, 2006, Vol. 42, No. 4, pp. 65–76.

Supported in part by the NFNI, contract no. M-1405/2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landjev, I., Rousseva, A. An extension theorem for arcs and linear codes. Probl Inf Transm 42, 319–329 (2006). https://doi.org/10.1134/S0032946006040041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946006040041

Keywords

Navigation