Abstract
Discrete-time stochastic processes generating elements of either a finite set (alphabet) or a real line interval are considered. Problems of estimating limiting (or stationary) probabilities and densities are considered, as well as classification and prediction problems. We show that universal coding (or data compression) methods can be used to solve these problems.
Similar content being viewed by others
References
Kullback, S., Information Theory and Statistics, New York: Wiley, 1959. Translated under the title Teoriya informatsii i statistika, Moscow: Nauka, 1967.
Ryabko, B.Ya. and Monarev, V.A., Using Information Theory Approach to Randomness Testing, J. Stat. Plan. Inference, 2005, vol. 133, no. 1, pp. 95–110.
Ryabko, B. and Astola, J., Universal Codes as a Basis for Time Series Testing, Stat. Methodol., 2006, vol. 3, no. 4, pp. 375–397.
Ryabko, B.Ya. and Monarev, V.A., Experimental Investigation of Forecasting Methods Based on Data Compression Algorithms, Probl. Peredachi Inf., 2005, vol. 41, no. 1, pp. 74–78 [Probl. Inf. Trans. (Engl. Transl.), 2005, vol. 41, no. 1, pp. 65–69].
Ryabko, B.Ya., Prediction of Random Sequences and Universal Coding, Probl. Peredachi Inf., 1988, vol. 24, no. 2, pp. 3–14 [Probl. Inf. Trans. (Engl. Transl.), 1988, vol. 24, no. 2, pp. 87–96].
Algoet, P., Universal Schemes for Learning the Best Nonlinear Predictor Given the Infinite Past and Side Information, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 4, pp. 1165–1185.
Györfi, L., Morvai, G., and Yakowitz, S.J., Limits to Consistent On-line Forecasting for Ergodic Time Series, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 2, pp. 886–892.
Jacquet, P., Szpankowski, W., and Apostol, I., A Universal Predictor Based on Pattern Matching, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 6, pp. 1462–1472.
Kieffer, J., Prediction and Information Theory, Preprint of Univ. of Minnesota, 1998.
Modha, D.S. and Masry, E., Memory-Universal Prediction of Stationary Random Processes, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 117–133.
Morvai, G., Yakowitz, S.J., and Algoet, P., Weakly Convergent Nonparametric Forecasting of Stationary Time Series, IEEE Trans. Inform. Theory, 1997, vol. 43, no. 2, pp. 483–498.
Kolmogorov, A.N., Three Approaches to the Quantitative Definition of Information, Probl. Peredachi Inf., 1965, vol. 1, no. 1, pp. 3–11 [Probl. Inf. Trans. (Engl. Transl.), 1965, vol. 1, no. 1, pp. 1–7].
Uspensky, V.A., Semenov, A.L., and Shen’, A.Kh., Can an Individual Sequence of Zeros and Ones Be Random?, Uspekhi Mat. Nauk, 1990, vol. 45, no. 1, pp. 105–162 [Russian Math. Surveys (Engl. Transl.), 1990, vol. 45, no. 1, pp. 121–189].
Ryabko, B., Astola, J., and Gammerman, A., Application of Kolmogorov Complexity and Universal Codes to Identity Testing and Nonparametric Testing of Serial Independence for Time Series, Theoret. Comput. Sci., 2006, vol. 359, no. 1–3, pp. 440–448.
Rukhin, A. et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication (SP 800-22), 2001. Available at http://csrc.nist.gov/rng/SP800-22b.pdf.
Kukushkina, O.V., Polikarpov, A.A., and Khmelev, D.V., Using Literal and Grammatical Statistics for Authorship Attribution, Probl. Peredachi Inf., 2001, vol. 37, no. 2, pp. 96–109 [Probl. Inf. Trans. (Engl. Transl.), 2001, vol. 37, no. 2, pp. 172–184].
Cilibrasi, R. and Vitányi, P.M.B., Clustering by Compression, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 4, pp. 1523–1545.
Cilibrasi, R., Vitányi, P., and de Wolf, R., Algorithmic Clustering of Music Based on String Compression, Computer Music J., 2004, vol. 28, no. 4, pp. 49–67.
Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1970, vol. 1, 3rd ed. Translated under the title Vvedenie v teoriyu veroyatnostej i ee prilozheniya, Moscow: Mir, 1984, vol 1.
Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems, New York: Academic; Budapest: Akad. Kiadó, 1981. Translated under the title Teoriya informatsii: teoremy kodirovaniya dlya diskretnykh sistem bez pamyati, Moscow: Mir, 1985.
Ryabko, B.Ya., Fast Adaptive Coding Algorithm, Probl. Peredachi Inf., 1990, vol. 26, no. 4, pp. 24–37 [Probl. Inf. Trans. (Engl. Transl.), 1990, vol. 24, no. 4, pp. 305–317].
Krichevskii, R.E., The Relation Between Redundancy Coding and the Reliability of Information from a Source, Probl. Peredachi Inf., 1968, vol. 4, no. 3, pp. 48–57 [Probl. Inf. Trans. (Engl. Transl.), 1968, vol. 4, no. 3, pp. 37–45].
Krichevskii, R.E., Szhatie i poisk informatsii, Moscow: Radio i Svyaz’, 1989. Translated under the title Universal Compression and Retrieval, Dordrecht: Kluwer, 1994.
Gallager, R.G., Information Theory and Reliable Communication, New York: Wiley, 1968. Translated under the title Teoriya informatsii i nadezhnaya svyaz’, Moscow: Sov. Radio, 1974.
Ryabko, D. and Hutter, M., Sequence Prediction for Non-stationary Processes, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery, Ahlswede, R., Apostolico, A., and Levenshtein, V.I., Eds., Dagstuhl Seminar Proceedings, no. 06201, Dagstuhl: IBFI, 2006.
Barron, A.R., The Strong Ergodic Theorem for Densities: Generalized Shannon-McMillan-Breiman Theorem, Ann. Probab., 1985, vol. 13, no. 4, pp. 1292–1303.
Darbellay, G.A. and Vajda, I., Entropy Expressions for Multivariate Continuous Distributions, IEEE Trans. Inform. Theory, 2000, vol. 46, no. 2, pp. 709–712.
Darbellay, G.A. and Vajda, I., Estimation of the Mutual Information with Data-Dependent Partitions, Research Rep. of the Inst. of Information Theory and Automation (ÚTIA), Prague, 1998, no. 1921.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © B.Ya. Ryabko, 2007, published in Problemy Peredachi Informatsii, 2007, Vol. 43, No. 4, pp. 109–123.
Supported in part by the Russian Foundation for Basic Research, project no. 06-07-89025.
Rights and permissions
About this article
Cite this article
Ryabko, B.Y. Application of data compression methods to nonparametric estimation of characteristics of discrete-time stochastic processes. Probl Inf Transm 43, 367–379 (2007). https://doi.org/10.1134/S0032946007040096
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1134/S0032946007040096