Skip to main content
Log in

Stochastic recovery problem

  • Methods of Signal Processing
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We consider the problem of estimating a functional defined on some functional class from observations (with noise) of values of other functionals at the same functional class. In general, all functionals are nonlinear. We propose a formal mathematical statement of the problem. For the proposed statement, we give a nonasymptotically optimal estimation method under rather weak constraints on the estimated functional and noise. Some examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Micchelli, C.A. and Rivlin, T.J., Lectures on Optimal Recovery, Lect. Notes Math., Berlin: Springer, 1985, vol. 1129, pp. 21–93.

    Google Scholar 

  2. Magaril-Il’yaev, G.G., Osipenko, K.Yu., and Tikhomirov, V.M., Indefinite Knowledge about an Object and Accuracy of Its Recovery Methods, Probl. Peredachi Inf., 2003, vol. 39, no. 1, pp. 118–133 [Probl. Inf. Trans. (Engl. Transl.), 2003, vol. 39, no. 1, pp. 104–118].

    MathSciNet  Google Scholar 

  3. Magaril-Il’yaev, G.G. and Tikhomirov, V.M., Vypuklyi analiz i ego prilozheniya, Moscow: Editorial URSS, 2000. Translated under the title Convex Analysis: Theory and Applications, Providence: Amer. Math. Soc., 2003.

    Google Scholar 

  4. Traub, J.F. and Woźniakowski, H., A General Theory of Optimal Algorithms, New York: Academic, 1980.

    MATH  Google Scholar 

  5. Darkhovskii, B.S., On a Stochastic Recovery Problem, Teor. Veroyatnost. i Primenen., 1998, vol. 43, no. 2, pp. 357–364 [Theory Probab. Appl. (Engl. Transl.), 1999, vol. 43, no. 2, pp. 282–288].

    MathSciNet  Google Scholar 

  6. Darkhovskii, B.S., A New Approach to a Stochastic Renewal Problem, Teor. Veroyatnost. i Primenen., 2004, vol. 49, no. 1, pp. 36–53 [Theory Probab. Appl. (Engl. Transl.), 2005, vol. 49, no. 1, pp. 51–64].

    MathSciNet  Google Scholar 

  7. Magaril-Il’yaev, G.G., Osipenko, K.Yu., and Tikhomirov, V.M., Optimal Reconstruction and Extremum Theory, Dokl. Ross. Akad. Nauk, 2001, vol. 379, no. 2, pp. 161–164 [Dokl. Math. (Engl. Transl.), 2001, vol. 64, no. 1, pp. 32–35].

    MathSciNet  Google Scholar 

  8. Ioffe, A.D. and Tikhomirov, V.M., Teoriya ekstremal’nykh zadach, Moscow: Nauka, 1974. Translated under the title Theory of Extremal Problems, Amsterdam: North-Holland, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Darkhovsky.

Additional information

Original Russian Text © B.S. Darkhovsky, 2008, published in Problemy Peredachi Informatsii, 2008, Vol. 44, No. 4, pp. 20–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darkhovsky, B.S. Stochastic recovery problem. Probl Inf Transm 44, 303–314 (2008). https://doi.org/10.1134/S0032946008040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946008040030

Keywords