Skip to main content
Log in

Enumeration of constant-weight run-length limited binary sequences

  • Source Coding
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

Constant-weight binary sequences with constrained run lengths of zeros and ones are introduced. These run-length constraints are separate and independent. Using the Babkin-Cover enumerative scheme, the number of these sequences is found. Then enumeration-based encoding and decoding procedures are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Immink, K.A.S., Siegel, P.H., and Wolf, J.K., Codes for Digital Recorders, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 6, pp. 2260–2299.

    Article  MATH  MathSciNet  Google Scholar 

  2. Vasil’ev, P.I. and Kolesnik, V.D., Run-Length-Limited Codes, in Pomekhoustoichivoe kodirovanie i nadezhnost’ EVM (Error-Resistant Coding and Computer Reliability), Moscow: Nauka, 1987, pp. 95–109.

    Google Scholar 

  3. Kurmaev, O.F., Coding of Run-Length-Limited Sequences, Probl. Peredachi Inf., 2001, vol. 37, no. 3, pp. 34–43 [Probl. Inf. Trans. (Engl. Transl.), 2001, vol. 37, no. 3, pp. 216–225].

    MathSciNet  Google Scholar 

  4. Beenker, G.F.M. and Immink, K.A.S., A Generalized Method For Encoding and Decoding Run-Length-Limited Binary Sequences, IEEE Trans. Inform. Theory, 1983, vol. 29, no. 5, pp. 751–754.

    Article  MATH  Google Scholar 

  5. Babkin, V.F., A Universal Encoding Method with Nonexponential Work Expenditure for a Source of Independent Messages, Probl. Peredachi Inf., 1971, vol. 7, no. 4, pp. 13–21 [Probl. Inf. Trans. (Engl. Transl.), 1971, vol. 7, no. 4, pp. 288–294].

    MATH  MathSciNet  Google Scholar 

  6. Cover, T.M., Enumerative Source Encoding, IEEE Trans. Inform. Theory, 1973, vol. 19, no. 1, pp. 73–77.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kautz, W.H., Fibonacci Codes for Synchronization Control, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 2, pp. 284–292.

    Article  MATH  MathSciNet  Google Scholar 

  8. Blaum, M.C., Cideciyan, R.D., Eleftheriou, E., Galbraith, R., Lakovic, K., Mittelholzer, T., Oenning, T., and Wilson, B., Enumerative Encoding with Non-uniform Modulation Constraints, in Proc. 2007 IEEE Int. Sympos. on Information Theory (ISIT’2007), Nice, France, 2007, pp. 1831–1835.

  9. Blaum, M.C. and Lakovic, K., Variable Span Fibonacci Modulation Codes with Limited Byte Error Propagation, in Proc. 2007 IEEE Int. Sympos. on Information Theory (ISIT’2007), Nice, France, 2007, pp. 2541–2544.

  10. Datta, S. and McLaughlin, S.W., An Enumerative Method for Runlength-Limited Codes: Permutation Codes, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 6, pp. 2199–2204.

    Article  MATH  MathSciNet  Google Scholar 

  11. Ryabko, B. and Medvedeva, Yu., Fast Enumeration of Run-Length-Limited Words, in Proc. 2009 IEEE Int. Sympos. on Information Theory (ISIT’2009), Seoul, Korea, 2009, pp. 640–643.

  12. Lee, P., Combined Error-Correcting/Modulation Recording Codes, PhD Thesis, San Diego: Univ. of California, 1988.

    Google Scholar 

  13. Forsberg, K. and Blake, I., The Enumeration of (d, k) Sequences, in Proc. 26th Allerton Conf. on Communications, Control, and Computing, Monticello, IL, 1988, pp. 471–472.

  14. Ytrehus, IEEE Trans. Inform. Theory, 1991, vol. 37, no. 3, pp. 941–945.

    Article  MathSciNet  Google Scholar 

  15. Kurmaev, O.F., Enumerative Coding for Constant-Weight Binary Sequences with Constrained Run-Length of Zeros, Probl. Peredachi Inf., 2002, vol. 38, no. 4, pp. 3–9 [Probl. Inf. Trans. (Engl. Transl.), 2002, vol. 38, no. 4, pp. 249–254].

    MathSciNet  Google Scholar 

  16. Riordan, J., An Introduction to Combinatorial Analysis, New York: Wiley, 1958. Translated under the title Vvedenie v kombinatornyi analiz, Moscow: Inostr. Lit., 1963.

    MATH  Google Scholar 

  17. Knuth, D.E., Efficient Balanced Codes, IEEE Trans. Inform. Theory, 1986, vol. 32, no. 1, pp. 51–53.

    Article  MATH  MathSciNet  Google Scholar 

  18. Hollmann, H.D.L. and Immink, K.A.S., Performance of Efficient Balanced Codes, IEEE Trans. Inform. Theory, 1991, vol. 37, no. 3, pp. 913–918.

    Article  MathSciNet  Google Scholar 

  19. Weber, J.H. and Immink, K.A.S., Knuth’s Balanced Codes Revisited, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 4, pp. 1673–1679.

    Article  MathSciNet  Google Scholar 

  20. Moon, J. and Brickner, B., Maximum Transition Run Codes for Data Storage Systems, IEEE Trans. Magn., 1996, vol. 32, no. 5, pp. 3992–3994.

    Article  Google Scholar 

  21. Schouhamer Immink, K.A., Codes for Mass Data Storage Systems, Eindhoven: Shannon Foundation Publ., 2004, 2nd ed.

    Google Scholar 

  22. Kurmaev, O., An Enumerative Method for Encoding and Decoding Constant-Weight Run-Length Limited Binary Sequences, in Proc. 2002 IEEE Int. Sympos. on Information Theory (ISIT’2002), Lausanne, Switzerland, 2002, pp. 328.

  23. Schalkwijk, J.P.M., An Algorithm for Source Coding, IEEE Trans. Inform. Theory, 1972, vol. 18, no. 3, pp. 395–399.

    Article  MATH  Google Scholar 

  24. Golomb, S.W., Run-Length Encodings, IEEE Trans. Inform. Theory, 1966, vol. 12, no. 3, pp. 399–401.

    Article  MATH  MathSciNet  Google Scholar 

  25. Tal, I., Etzion, T., and Roth, R.M., On Row-by-Row Coding for 2-D Constraints, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 8, pp. 3565–3576.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Kurmaev.

Additional information

Original Russian Text © O.F. Kurmaev, 2011, published in Problemy Peredachi Informatsii, 2011, Vol. 47, No. 1, pp. 74–91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurmaev, O.F. Enumeration of constant-weight run-length limited binary sequences. Probl Inf Transm 47, 64–80 (2011). https://doi.org/10.1134/S0032946011010078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946011010078

Keywords

Navigation