Abstract
We derive a lower bound on the secrecy capacity of a compound wiretap channel with channel state information at the transmitter which matches the general upper bound on the secrecy capacity of general compound wiretap channels given by Liang et al. [1], thus establishing a full coding theorem in this case. We achieve this with a stronger secrecy criterion and the maximum error probability criterion, and with a decoder that is robust against the effect of randomization in the encoding. This relieves us from the need of decoding the randomization parameter, which is in general impossible within this model. Moreover, we prove a lower bound on the secrecy capacity of a compound wiretap channel without channel state information and derive a multiletter expression for the capacity in this communication scenario.
Similar content being viewed by others
References
Liang, Y., Kramer, G., Poor, H.V., and Shamai (Shitz), S., Compound Wiretap Channels, EURASIP J. Wireless Commun. Networking, 2009, Art. ID 142374, 12 pp.
Bloch, M. and Laneman, J.N., On the Secrecy Capacity of Arbitrary Wiretap Channels, in Proc. 46th Ann. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, 2008, pp. 818–825.
Bjelaković, I., Boche, H., and Sommerfeld, J., Capacity Results for Arbitrarily Varying Wiretap Channels, accepted for publication in LNCS Volume in Memory of R. Ahlswede.2012.
Wyner, A.D., The Wire-Tap Channel, Bell System Tech. J., 1975, vol. 54, no. 8, pp. 1355–1387.
Csiszár, I., Almost Independence and Secrecy Capacity, Probl. Peredachi Inf., 1996, vol. 32, no. 1, pp. 48–57 [Probl. Inf. Trans. (Engl. Transl.), 1996, vol. 32, no. 1, pp. 40–47].
Maurer, U.M. and Wolf, S., Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free, Advances in Cryptology — EUROCRYPT 2000 (Proc. Int. Conf. on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, 2000), Preneel B., Ed., Lect. Notes Comp. Sci., vol. 1807, Berlin: Springer, 2000, pp. 351–368.
Cai, N., Winter, A., and Yeung, R.W., Quantum Privacy and Quantum Wiretap Channels, Probl. Peredachi Inf., 2004, vol. 40, no. 4, pp. 26–47 [Probl. Inf. Trans. (Engl. Transl.), 2004, vol. 40, no. 4, pp. 318–336].
Devetak, I., The Private Classical Capacity and Quantum Capacity of a Quantum Channel, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 1, pp. 44–55.
Blackwell D., Breiman L., Thomasian A.J.The Capacity of a Class of Channels, Ann. Math. Statist., 1959, vol. 30, no. 4, pp. 1229–1241.
Ahlswede, R. and Dueck, G., Identification via Channels, IEEE Trans. Inform. Theory, 1989, vol. 35, no. 1, pp. 15–29.
Ahlswede, R., General Theory of Information Transfer: Updated, Discrete Appl. Math., 2008, vol. 156, no. 9, pp. 1348–1388.
Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems, Cambridge: Cambridge Univ. Press, 2011, 2nd ed. First edition translated under the title Teoriya informatsii: teoremy kodirovaniya dlya diskretnykh sistem bez pamyati, Moscow: Mir, 1985
Wyrembelski, R.F., Bjelaković, I., Oechtering, T.J., and Boche, H., Optimal Coding Strategies for Bidirectional Broadcast Channels under Channel Uncertainty, IEEE Trans. Commun., 2010, vol. 58, no. 10, pp. 2984–2994.
Dubhashi, D.P. and Panconesi, A., Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge: Cambridge Univ. Press, 2009.
Ahlswede, R. and Winter, A., Strong Converse for Identification via Quantum Channels, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 3, pp. 569–579.
Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 1923, vol. 17, no. 1, pp. 228–249.
Ahlswede, R. and Csiszár, I., Common Randomness in Information Theory and Crytography-Part I: Secret Sharing, IEEE Trans. Inform. Theory, 1993, vol. 39, no. 4, pp. 1121–1132.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © I. Bjelaković, H. Boche, J. Sommerfeld, 2013, published in Problemy Peredachi Informatsii, 2013, Vol. 49, No. 1, pp. 83–111.
Supported in part by the Deutsche Forschungsgemeinschaft (DFG), project nos. BO 1734/16-1 and BO 1734/20-1, and Bundesministerium für Bildung und Forschung (BMBF), grant no. 01BQ1050.
Rights and permissions
About this article
Cite this article
Bjelaković, I., Boche, H. & Sommerfeld, J. Secrecy results for compound wiretap channels. Probl Inf Transm 49, 73–98 (2013). https://doi.org/10.1134/S0032946013010079
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946013010079