Skip to main content
Log in

Secrecy results for compound wiretap channels

  • Information Protection
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We derive a lower bound on the secrecy capacity of a compound wiretap channel with channel state information at the transmitter which matches the general upper bound on the secrecy capacity of general compound wiretap channels given by Liang et al. [1], thus establishing a full coding theorem in this case. We achieve this with a stronger secrecy criterion and the maximum error probability criterion, and with a decoder that is robust against the effect of randomization in the encoding. This relieves us from the need of decoding the randomization parameter, which is in general impossible within this model. Moreover, we prove a lower bound on the secrecy capacity of a compound wiretap channel without channel state information and derive a multiletter expression for the capacity in this communication scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, Y., Kramer, G., Poor, H.V., and Shamai (Shitz), S., Compound Wiretap Channels, EURASIP J. Wireless Commun. Networking, 2009, Art. ID 142374, 12 pp.

    Google Scholar 

  2. Bloch, M. and Laneman, J.N., On the Secrecy Capacity of Arbitrary Wiretap Channels, in Proc. 46th Ann. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, 2008, pp. 818–825.

  3. Bjelaković, I., Boche, H., and Sommerfeld, J., Capacity Results for Arbitrarily Varying Wiretap Channels, accepted for publication in LNCS Volume in Memory of R. Ahlswede.2012.

    Google Scholar 

  4. Wyner, A.D., The Wire-Tap Channel, Bell System Tech. J., 1975, vol. 54, no. 8, pp. 1355–1387.

    MathSciNet  MATH  Google Scholar 

  5. Csiszár, I., Almost Independence and Secrecy Capacity, Probl. Peredachi Inf., 1996, vol. 32, no. 1, pp. 48–57 [Probl. Inf. Trans. (Engl. Transl.), 1996, vol. 32, no. 1, pp. 40–47].

    Google Scholar 

  6. Maurer, U.M. and Wolf, S., Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free, Advances in Cryptology — EUROCRYPT 2000 (Proc. Int. Conf. on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, 2000), Preneel B., Ed., Lect. Notes Comp. Sci., vol. 1807, Berlin: Springer, 2000, pp. 351–368.

    Chapter  Google Scholar 

  7. Cai, N., Winter, A., and Yeung, R.W., Quantum Privacy and Quantum Wiretap Channels, Probl. Peredachi Inf., 2004, vol. 40, no. 4, pp. 26–47 [Probl. Inf. Trans. (Engl. Transl.), 2004, vol. 40, no. 4, pp. 318–336].

    MathSciNet  Google Scholar 

  8. Devetak, I., The Private Classical Capacity and Quantum Capacity of a Quantum Channel, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 1, pp. 44–55.

    Article  MathSciNet  Google Scholar 

  9. Blackwell D., Breiman L., Thomasian A.J.The Capacity of a Class of Channels, Ann. Math. Statist., 1959, vol. 30, no. 4, pp. 1229–1241.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ahlswede, R. and Dueck, G., Identification via Channels, IEEE Trans. Inform. Theory, 1989, vol. 35, no. 1, pp. 15–29.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ahlswede, R., General Theory of Information Transfer: Updated, Discrete Appl. Math., 2008, vol. 156, no. 9, pp. 1348–1388.

    Article  MathSciNet  MATH  Google Scholar 

  12. Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems, Cambridge: Cambridge Univ. Press, 2011, 2nd ed. First edition translated under the title Teoriya informatsii: teoremy kodirovaniya dlya diskretnykh sistem bez pamyati, Moscow: Mir, 1985

    Book  MATH  Google Scholar 

  13. Wyrembelski, R.F., Bjelaković, I., Oechtering, T.J., and Boche, H., Optimal Coding Strategies for Bidirectional Broadcast Channels under Channel Uncertainty, IEEE Trans. Commun., 2010, vol. 58, no. 10, pp. 2984–2994.

    Article  Google Scholar 

  14. Dubhashi, D.P. and Panconesi, A., Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge: Cambridge Univ. Press, 2009.

    Book  MATH  Google Scholar 

  15. Ahlswede, R. and Winter, A., Strong Converse for Identification via Quantum Channels, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 3, pp. 569–579.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fekete, M., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 1923, vol. 17, no. 1, pp. 228–249.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ahlswede, R. and Csiszár, I., Common Randomness in Information Theory and Crytography-Part I: Secret Sharing, IEEE Trans. Inform. Theory, 1993, vol. 39, no. 4, pp. 1121–1132.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bjelaković.

Additional information

Original Russian Text © I. Bjelaković, H. Boche, J. Sommerfeld, 2013, published in Problemy Peredachi Informatsii, 2013, Vol. 49, No. 1, pp. 83–111.

Supported in part by the Deutsche Forschungsgemeinschaft (DFG), project nos. BO 1734/16-1 and BO 1734/20-1, and Bundesministerium für Bildung und Forschung (BMBF), grant no. 01BQ1050.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjelaković, I., Boche, H. & Sommerfeld, J. Secrecy results for compound wiretap channels. Probl Inf Transm 49, 73–98 (2013). https://doi.org/10.1134/S0032946013010079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946013010079

Keywords