Skip to main content
Log in

DNA codes for nonadditive stem similarity

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

DNA sequences are sequences with elements from the quaternary DNA alphabet {A, C, G, T}. An important property of them is their directedness and ability to form duplexes as a result of hybridization process, i.e., coalescing two oppositely directed sequences. In biological experiments exploiting this property it is necessary to generate an ensemble of such sequences (DNA codes) consisting of pairs of DNA sequences referred to as Watson-Crick duplexes. Furthermore, for any two words of the DNA code that do not form a Watson-Crick duplex, hybridization energy—stability measure of a potential DNA duplex—is upper bounded by a constant specified by conditions of an experiment. This problem can naturally be interpreted in terms of coding theory. Continuing our previous works, we consider a nonadditive similarity function for two DNA sequences, which most adequately models their hybridization energy. For the maximum cardinality of DNA codes based on this similarity, we establish a Singleton upper bound and present an example of an optimal construction. Using ensembles of DNA codes with special constraints on codewords, which we call Fibonacci ensembles, we obtain a random-coding lower bound on the maximum cardinality of DNA codes under this similarity function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levenshtein, V.I., Binary Codes Capable of Correcting Deletions, Insertions, and Reversals, Dokl. Akad. Nauk SSSR, 1965, vol. 163, no. 4, pp. 845–848 [Soviet Phys. Dokl. (Engl. Transl.), 1966, vol. 10, no. 8, pp. 707–710].

    MathSciNet  Google Scholar 

  2. Levenshtein, V.I., Elements of Coding Theory, in Diskretnaya matematika i matematicheskie voprosy kibernetiki (Discrete Mathematics and Mathematical Problems of Cybernetics), Moscow: Nauka, 1974, pp. 207–305.

    Google Scholar 

  3. Levenshtein, V.I., Efficient Reconstruction of Sequences from Their Subsequences and Supersequences, J. Combin. Theory, Ser. A, 2001, vol. 93, no. 2, pp. 310–332.

    Article  MathSciNet  MATH  Google Scholar 

  4. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.

    MATH  Google Scholar 

  5. Tenengolts, G.M., Nonbinary Codes, Correcting Single Deletions or Insertions, IEEE Trans. Inform. Theory, 1984, vol. 30, no. 5, pp. 766–769.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dancik, V., Expected Length of Longest Common Subsequence, PhD Thesis, Univ. of Warwick, UK, 1994.

    Google Scholar 

  7. D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., and Torney, D.C., A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes, DNA Computing (Proc. 10th Int. Workshop on DNA Computing, Milan, Italy, June 7–10, 2004), Ferretti, C., Mauri, G., and Zandron, C., Eds., Lect. Notes Comp. Sci, vol. 3384, Berlin: Springer, 2005, pp. 90–103.

    Google Scholar 

  8. Bishop, M.A., D’yachkov, A.G., Macula, A.J., Renz, T.E., and Rykov, V.V., Free Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes, J. Comput. Biol., 2007, vol. 14, no. 8, pp. 1088–1104.

    Article  MathSciNet  Google Scholar 

  9. SantaLucia J., Jr., A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 4, pp. 1460–1465.

    Article  Google Scholar 

  10. D’yachkov, A.G. and Voronina, A.N., DNA Codes for Additive Stem Similarity, Probl. Peredachi Inf., 2009, vol. 45, no. 2, pp. 56–77 [Probl. Inf. Trans. (Engl. Transl.), 2009, vol. 45, no. 2, pp. 124–144].

    MathSciNet  Google Scholar 

  11. D’yachkov, A.G., Erdős, P.L., Macula, A.J., Rykov, V.V., Torney, D.C., Tung, C.-S., Vilenkin, P.A., and White, P.S., Exordium for DNA Codes, J. Comb. Optim., 2003, vol. 7, no. 4, pp. 369–379.

    Article  MathSciNet  MATH  Google Scholar 

  12. D’yachkov, A.G., Vilenkin, P.A., Ismagilov, I.K., Sarbaev, R.S., Macula, A., Torney, D., and White, S., On DNA Codes, Probl. Peredachi Inf., 2005, vol. 41, no. 4, pp. 57–77 [Probl. Inf. Trans. (Engl. Transl.), 2005, vol. 41, no. 4, pp. 349–367].

    Google Scholar 

  13. King, O.D. and Gaborit, P., Linear Constructions for DNA Codes, Theoret. Comput. Sci., 2005, vol. 334, no. 1–3, pp. 99–113.

    MathSciNet  MATH  Google Scholar 

  14. D’yachkov, A.G., Macula, A.J., Renz, T.E., and Rykov, V.V., Random Coding Bounds for DNA Codes Based on Fibonacci Ensembles of DNA Sequences, in Proc. 2008 IEEE Int. Sympos. on Information Theory, Toronto, Canada, July 6–11, 2008, pp. 2292–2296.

  15. D’yachkov, A.G., Voronina, A.N., Macula, A.J., Renz, T.E., and Rykov, V.V., On Critical Relative Distance of DNA Codes for Additive Stem Similarity, in Proc. 2010 IEEE Int. Sympos. on Information Theory (ISIT’2010), Austin, Texas, USA, June 13–18, 2010, P. 1325–1329.

  16. Dyachkov, A.G., Voronina, A.N., Volkova, J.A., and Polyanskii, N.A., On Optimal DNA Codes for Additive and Non-Additive Stem Similarity, in Proc. 7th Int. Workshop on Coding and Cryptography (WCC’2011), Paris, France, April 11–15, 2011, pp. 313–322.

  17. Cameron, P.J., Combinatorics: Topics, Techniques, Algorithms, Cambridge, UK: Cambridge Univ. Press, 1994.

    MATH  Google Scholar 

  18. Reingold, E.M., Nievergelt, J., and Deo, N., Combinatorial Algorithms: Theory and Practice, Englewood Cliffs, N.J.: Prentice-Hall, 1977. Translated under the title Kombinatornye algoritmy: teoriya i praktika, Moscow: Mir, 1980.

    Google Scholar 

  19. Voronina, A.N., Probability-Theoretic and Combinatorial Problems in DNA Sequence Coding Theory, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. D’yachkov.

Additional information

Original Russian Text © A.G. D’yachkov, A.N. Kuzina, N.A. Polyansky, A. Macula, V.V. Rykov, 2014, published in Problemy Peredachi Informatsii, 2014, Vol. 50, No. 3, pp. 51–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachkov, A.G., Kuzina, A.N., Polyansky, N.A. et al. DNA codes for nonadditive stem similarity. Probl Inf Transm 50, 247–269 (2014). https://doi.org/10.1134/S0032946014030041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946014030041

Keywords

Navigation