Skip to main content
Log in

On extending propelinear structures of the Nordstrom–Robinson code to the Hamming code

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

A code is said to be propelinear if its automorphism group contains a subgroup which acts on the codewords regularly. Such a subgroup is called a propelinear structure on the code. With the aid of computer, we enumerate all propelinear structures on the Nordstrom–Robinson code and analyze the problem of extending them to propelinear structures on the extended Hamming code of length 16. The latter result is based on the description of partitions of the Hamming code of length 16 into Nordstrom–Robinson codes via Fano planes, presented in the paper. As a result, we obtain a record-breaking number of propelinear structures in the class of extended perfect codes of length 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordstrom, A.W. and Robinson, J.P., An Optimum Nonlinear Code, Inform. Control, 1967, vol. 11, no. 5–6, pp. 613–616.

    Article  MATH  Google Scholar 

  2. Semakov, N.V. and Zinoviev, V.A., Complete and Quasi-complete Balanced Codes, Probl. Peredachi Inf., 1969, vol. 5, no. 2, pp. 14–18 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 2, pp. 11–13].

    MathSciNet  MATH  Google Scholar 

  3. Snover, S.L., The Uniqueness of the Nordstrom–Robinson and Golay Binary Codes, PhD Thesis, Dept. Math., Michigan State Univ., 1973.

    Google Scholar 

  4. Rifà, J., Basart, J.M., and Huguet, L., On Completely Regular Propelinear Codes, Proc. 6th Int. Conf. on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-6), Rome, Italy, July 4–8, 1988, Mora T., Ed., Lect. Notes Comp. Sci., vol. 357, Berlin: Springer, 1989, pp. 341–355.

    Article  MathSciNet  MATH  Google Scholar 

  5. Borges, J., Mogilnykh, I.Yu., Rifà, J., and Solov’eva, F.I., Structural Properties of Binary Propelinear Codes, Adv. Math. Commun., 2012, vol. 6, no. 3, pp. 329–346.

    Article  MathSciNet  MATH  Google Scholar 

  6. Forney, G.D., Jr., Trott, M.D., and Sloane, N.J.A., The Nordstrom–Robinson Code is the Binary Image of the Octacode, Coding and Quantization (Proc. DIMACS/IEEE Workshop, Princeton Univ., NJ, USA, Oct. 19–21, 1992), Calderbank, R., Forney, G.D., Jr., and Moayeri, N., Eds., Providence, RI: Amer. Math. Soc., 1993, pp. 19–26.

    Google Scholar 

  7. Preparata, F.P., A Class of Optimum Nonlinear Double-Error-Correcting Codes, Inform. Control, 1968, vol. 13, no. 4, pp. 378–400.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zaitsev, G.V., Zinoviev, V.A., and Semakov, N.V., Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes, Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, Armenia, USSR, Sept. 2–8, 1971, Petrov, P.N. and Csaki, F., Eds., Budapest: Akad. Kiadó, 1973, pp. 257–263.

    Google Scholar 

  9. Semakov, N.V. and Zinoviev, V.A., Constant-Weight Codes and Tactical Configurations, Probl. Peredachi Inf., 1969, vol. 5, no. 3, pp. 28–36 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 3, pp. 22–28].

    MATH  Google Scholar 

  10. Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., Uniformly Packed Codes, Probl. Peredachi Inf., 1971, vol. 7, no. 1, pp. 38–50 [Probl. Inf. Trans. (Engl. Transl.), 1971, vol. 7, no. 1, pp. 30–39].

    MathSciNet  MATH  Google Scholar 

  11. Hammons, A.R., Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., and Solé, P., The Z4-Linearity of Kerdock, Preparata, Goethals, and Related Codes, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 2, pp. 301–319.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dumer, I.I., Some New Uniformly Packed Codes, in Proc. Moscow Inst. Physics and Technology, Moscow, 1976, pp. 72–78.

    Google Scholar 

  13. Baker, R.D., van Lint, J.H., and Wilson R.M., On the Preparata and Goethals Codes, IEEE Trans. Inform. Theory, 1983, vol. 29, no. 3, pp. 342–345.

    Article  MathSciNet  MATH  Google Scholar 

  14. Borges, J., Phelps, K.T., Rifà, J., and Zinoviev, V.A., On Z4-linear Preparata-like and Kerdock-like Codes, IEEE Trans. Inform. Theory, 2003, vol. 49, no. 11, pp. 2834–2843.

    Article  MathSciNet  MATH  Google Scholar 

  15. Rifà, J. and Pujol, J., Translation-Invariant Propelinear Codes, IEEE Trans. Inform. Theory, 1997, vol. 43, no. 2, pp. 590–598.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zinoviev, D.V. and Zinoviev, V.A., On the Preparata-like Codes, in Proc. 14th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-14), Svetlogorsk, Russia, Sept. 7–13, 2014, pp. 342–347.

    Google Scholar 

  17. Solov’eva, F.I. and Topalova, S.T., On Automorphism Groups of Perfect Binary Codes and Steiner Triple Systems, Probl. Peredachi Inf., 2000, vol. 36, no. 4, pp. 53–58 [Probl. Inf. Trans. (Engl. Transl.), 2000, vol. 36, no. 4, pp. 331–335].

    MathSciNet  MATH  Google Scholar 

  18. Borges, J., Mogilnykh, I.Yu., Rifà, J., and Solov’eva, F.I., On the Number of Nonequivalent Propelinear Extended Perfect Codes, Electron. J. Combin., 2013, vol. 20, no. 2, Research Paper P37.

    Google Scholar 

  19. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.

    MATH  Google Scholar 

  20. Bierbrauer, J., Nordstrom–Robinson Code and A7-Geometry, Finite Fields Appl., 2007, vol. 13, no. 1, pp. 158–170.

    Article  MathSciNet  MATH  Google Scholar 

  21. Berlekamp, E.R., Coding Theory and the Mathieu Groups, Inform. Control, 1971, vol. 18, no. 1, pp. 40–64.

    Article  MathSciNet  MATH  Google Scholar 

  22. Avgustinovich, S.V. and Solov’eva, F.I., To the Metric Rigidity of Binary Codes, Probl. Peredachi Inf., 2003, vol. 39, no. 2, pp. 23–28 [Probl. Inf. Trans. (Engl. Transl.), 2003, vol. 39, no. 2, pp. 178–183].

    MathSciNet  MATH  Google Scholar 

  23. Mogilnykh, I.Yu., On Weak Isometries of Preparata Codes, Probl. Peredachi Inf., 2009, vol. 45, no. 2, pp. 78–83 [Probl. Inf. Trans. (Engl. Transl.), 2009, vol. 45, no. 2, pp. 145–150].

    MathSciNet  Google Scholar 

  24. Fernández-Córdoba, C. and Phelps, K.T., On the Minimum Distance Graph of an Extended Preparata Code, Des. Codes Cryptogr., 2010, vol. 57, no. 2, pp. 161–168.

    Article  MathSciNet  MATH  Google Scholar 

  25. Avgustinovich, S.V., To the Structure of Minimum Distance Graphs of Perfect Binary (n, 3)-Codes, Diskretn. Anal. Issled. Oper., Ser. 1, 1998, vol. 5, no. 4, pp. 3–5.

    MathSciNet  MATH  Google Scholar 

  26. Mogilnykh, I.Yu., Östergård, P.R.J., Pottonen, O., and Solov’eva, F.I., Reconstructing Extended Perfect Binary One-Error-Correcting Codes from Their Minimum Distance Graphs, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 6, pp. 2622–2625.

    Article  MathSciNet  Google Scholar 

  27. McEliece, R.J., A Public-Key Cryptosystem Based on Algebraic Coding Theory, JPL DSN Progress Report, 1978, pp. 114–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Mogil’nykh.

Additional information

Original Russian Text © I.Yu. Mogil’nykh, 2016, published in Problemy Peredachi Informatsii, 2016, Vol. 52, No. 3, pp. 97–107.

The results of Section 3 of the paper are obtained under the support of the Russian Foundation for Basic Research, project no. 13-01-00463; results of Section 4 are funded by the Russian Science Foundation, project no. 14-11-00555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogil’nykh, I.Y. On extending propelinear structures of the Nordstrom–Robinson code to the Hamming code. Probl Inf Transm 52, 289–298 (2016). https://doi.org/10.1134/S0032946016030078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946016030078

Navigation