Skip to main content
Log in

Spaceability for sets of bandlimited input functions and stable linear time-invariant systems with finite time blowup behavior

  • Methods of Signal Processing
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

The approximation of linear time-invariant systems by sampling series is studied for bandlimited input functions in the Paley–Wiener space PW 1π , i.e., bandlimited signals with absolutely integrable Fourier transform. It has been known that there exist functions and systems such that the approximation process diverges. In this paper we identify a signal set and a system set with divergence, i.e., a finite time blowup of the Shannon sampling expression. We analyze the structure of these sets and prove that they are jointly spaceable, i.e., each of them contains an infinite-dimensional closed subspace such that for any function and system pair from these subspaces, except for the zero elements, we have divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boche, H. and Mönich, U.J, Signal and System Spaces with Non-Convergent Sampling Representation, in Proc. 24th European Signal Processing Conf. (EUSIPCO’2016), Budapest, Hungary, Aug. 29–Sept. 2, 2016, pp. 2131–2135.

    Google Scholar 

  2. Boche, H. and Mönich, U.J, General Behavior of Sampling-Based Signal and System Representation, in Proc. 2008 IEEE Int. Sympos. on Information Theory (ISIT’2008), Toronto, Ontario, Canada, July 6–11, 2008, pp. 2439–2443.

    Chapter  Google Scholar 

  3. Boche, H. and Mönich, U.J, Sampling of Deterministic Signals and Systems, IEEE Trans. Signal Process., 2011, vol. 59, no. 5, pp. 2101–2111.

    Article  MathSciNet  Google Scholar 

  4. Boche, H. and Mönich, U.J, No-Go Theorem for Sampling-Based Signal Processing, in Proc. 2014 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP’14), Florence, Italy, May 4–9, 2014, pp. 56–60.

    Chapter  Google Scholar 

  5. Fonf, V.P., Gurariy, V.I., and Kadets, M.I, An Infinite Dimensional Subspace of C[0, 1] Consisting of Nowhere Differentiable Functions, C. R. Acad. Bulgare Sci., 1999, vol. 52, no. 11–12, pp. 13–16.

    MathSciNet  MATH  Google Scholar 

  6. Gurariy, V.I. and Quarta, L, On Lineability of Sets of Continuous Functions, J. Math. Anal. Appl., 2004, vol. 294, no. 1, pp. 62–72.

    Article  MathSciNet  MATH  Google Scholar 

  7. Aron, R., Gurariy, V.I., and Seoane, J.B, Lineability and Spaceability of Sets of Functions on R, Proc. Amer. Math. Soc., 2005, vol. 133, no. 3, pp. 795–803.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bayart, F, Linearity of Sets of Strange Functions, Michigan Math. J., 2005, vol. 53, no. 2, pp. 291–303.

    Article  MathSciNet  MATH  Google Scholar 

  9. Botelho, G., Diniz, D., Fávaro, V.V., and Pellegrino, D, Spaceability in Banach and Quasi-Banach Sequence Spaces, Linear Algebra Appl., 2011, vol. 434, no. 5, pp. 1255–1260.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernal-González, L., Pellegrino, D., and Seoane-Sepúlveda, J.B, Linear Subsets of Nonlinear Sets in Topological Vector Spaces, Bull. Amer. Math. Soc. (N.S.), 2014, vol. 51, no. 1, pp. 71–130.

    Article  MathSciNet  MATH  Google Scholar 

  11. Aron, R.M., Bernal-González, L., Pellegrino, D.M., and Seoane-Sepúlveda, J.B., Lineability: The Search for Linearity in Mathematics, Boca Raton: CRC Press, 2016.

    MATH  Google Scholar 

  12. Gurariy, V.I, Subspaces and Bases in Spaces of Continuous Functions, Dokl. Akad. Nauk SSSR, 1966, vol. 167, no. 5, pp. 971–973.

    MathSciNet  Google Scholar 

  13. García-Pacheco, F.J., Palmberg, N., and Seoane-Sepúlveda, J.B, Lineability and Algebrability of Pathological Phenomena in Analysis, J. Math. Anal. Appl., 2007, vol. 326, no. 2, pp. 929–939.

    Article  MathSciNet  MATH  Google Scholar 

  14. Aron, R.M., García-Pacheco, F.J., Pérez-García, D., and Seoane-Sepúlveda, J.B, On Dense-Lineability of Sets of Functions on R, Topology, 2009, vol. 48, no. 2–4, pp. 149–156.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bernal-González, L. and Ordónez Cabrera, M, Lineability Criteria, with Applications, J. Funct. Anal., 2014, vol. 266, no. 6, pp. 3997–4025.

    Article  MathSciNet  MATH  Google Scholar 

  16. Boche, H., Mönich, U.J., and Tampubolon, E, Strong Divergence of the Shannon Sampling Series for an Infinite Dimensional Signal Space, Proc. 2016 IEEE Int. Sympos. on Information Theory (ISIT’2016), Barcelona, Spain, July 10–15, 2016, pp. 2878–2882.

    Chapter  Google Scholar 

  17. Brown, J.L, Bounds for Truncation Error in Sampling Expansions of Band-Limited Signals, IEEE Trans. Inform. Theory, 1969, vol. 15, no. 4, pp. 440–444.

    Article  MathSciNet  MATH  Google Scholar 

  18. Butzer, P.L., Splettstößer, W., and Stens, R.L, The Sampling Theorem and Linear Prediction in Signal Analysis, Jahresber. Deutsch. Math.-Verein., 1988, vol. 90, no. 1, pp. 1–70.

    MathSciNet  MATH  Google Scholar 

  19. Zygmund, A., Trigonometric Series, vol. I, Cambridge, UK; New York: Cambridge Univ. Press,2002, 3rd ed.

    MATH  Google Scholar 

  20. Duren, P.L., Theory of Hp Spaces, New York: Academic, 1970.

    MATH  Google Scholar 

  21. Diestel, J., Sequences and Series in Banach Spaces, New York: Springer-Verlag, 1984.

    Book  MATH  Google Scholar 

  22. Boche, H. and Mönich, U.J, System Representations for the Paley–Wiener Space PW2 p, accepted for publication in J. Fourier Anal. Appl., 2017, doi:10.1007/s00041-016-9517-3.

    Google Scholar 

  23. Banach, S. and Steinhaus, H, Sur le principe de la condensation de singularités, Fundam. Math., 1927, vol. 9, pp. 50–61.

    MATH  Google Scholar 

  24. Banach, S., Über die Bairesche Kategorie gewisser Funktionenmengen, Stud. Math., 1931, vol. 3, no. 1, pp. 174–179.

    MATH  Google Scholar 

  25. Kantorovich, L.V. and Akilov G.P., Funktsional’nyi analiz v normirovannykh prostranstvakh, Moscow: Fizmatlit, 1959. Translated under the title Functional Analysis in Normed Spaces, Oxford; New York: Pergamon, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Boche.

Additional information

Original Russian Text © H. Boche, U.J. Mönich, 2017, published in Problemy Peredachi Informatsii, 2017, Vol. 53, No. 2, pp. 70–90.

Supported by the Gottfried Wilhelm Leibniz Programme of the German Research Foundation (DFG).

Parts of this work were presented at the Workshop on Harmonic Analysis, Graphs and Learning at the Hausdorff Research Institute for Mathematics, Bonn, Germany, and at the 2016 European Signal Processing Conference [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boche, H., Mönich, U.J. Spaceability for sets of bandlimited input functions and stable linear time-invariant systems with finite time blowup behavior. Probl Inf Transm 53, 164–182 (2017). https://doi.org/10.1134/S0032946017020053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946017020053

Navigation