Skip to main content
Log in

The Geometry of Big Queues

  • Communication Network Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We use Hamilton equations to identify most likely scenarios of long queues being formed in ergodic Jackson networks. Since the associated Hamiltonians are discontinuous and piecewise Lipschitz, one has to invoke methods of nonsmooth analysis. Time reversal of the Hamilton equations yields fluid equations for the dual network. Accordingly, the optimal trajectories are time reversals of the fluid trajectories of the dual network. Those trajectories are shown to belong to domains that satisfy a certain condition of being “essential.” As an illustration, we consider a two-station Jackson network. In addition, we prove certain properties of substochastic matrices, which may be of interest in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wentzell, A.D. and Freidlin, M.I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmushchenii, Moscow: Nauka, 1979. Tanslated under the title Random Perturbations of Dynamical Systems, New York: Springer, 1984.

    Google Scholar 

  2. Shwartz, A. and Weiss, A., Large Deviations for Performance Analysis: Queues, Communications, and Computing, London: Chapman & Hall, 1995.

    MATH  Google Scholar 

  3. Kleinrock, L., Queueing Systems, vol. 1: Theory, New York: Wiley, 1975. Translated under the title Teoriya massovogo obsluzhivaniya, Moscow: Mashinostroenie, 1979.

    MATH  Google Scholar 

  4. Jacod, J. and Shiryaev, A.N., Limit Theorems for Stochastic Processes, Berlin: Springer, 1987. Translated under the title Predel’nye teoremy dlya sluchainykh protsessov, Moscow: Fizmatlit, 1994.

    Book  MATH  Google Scholar 

  5. Ethier, S.N. and Kurtz, T.G., Markov Processes: Characterization and Convergence, New York: Wiley, 1986.

    Book  MATH  Google Scholar 

  6. Puhalskii, A.A., The Action Functional for the Jackson Network, Markov Process. Related Fields, 2007, vol. 13, no. 1, pp. 99–136.

    MathSciNet  MATH  Google Scholar 

  7. Atar, R. and Dupuis, P., Large Deviations and Queueing Networks: Methods for Rate Function Identification, Stochastic Process. Appl., 1999, vol. 84, no. 2, pp. 255–296.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ignatiouk-Robert, I., Large Deviations of Jackson Networks, Ann. Appl. Probab., 2000, vol. 10, no. 3, pp. 962–1001.

    Article  MathSciNet  MATH  Google Scholar 

  9. Collingwood, J., Path Properties of Rare Events, PhD Thesis, Univ. of Ottawa, Canada, 2015.

    Google Scholar 

  10. Bouchet, F., Laurie, J., and Zaboronski, O., Langevin Dynamics, Large Deviations and Instantons for the Quasi-geostrophic Model and Two-Dimensional Euler Equations, J. Stat. Phys., 2014, vol. 156, no. 6, pp. 1066–1092.

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke, F.H., Optimization and Nonsmooth Analysis, New York: Wiley, 1983. Translated under the title Optimizatsiya i negladkii analiz, Moscow: Mir, 1988.

    MATH  Google Scholar 

  12. Rockafellar, R.T., Convex Analysis, Princeton Math. Series, vol. 28, Princeton: Princeton Univ. Press, 1970. Translated under the title Vypuklyi analiz, Moscow: Mir, 1973.

    Book  MATH  Google Scholar 

  13. Bramson, M., Stability of Queueing Networks (Ecole d’ÉtédeProbabilités de Saint-Flour XXXVI-2006), Lect. Notes Math., vol. 1950, Berlin: Springer, 2008.

    MATH  Google Scholar 

  14. Anantharam, V., Heidelberger, R., and Tsoukas, P., Analysis of Rare Events in Continuous Time Markov Chains via Time Reversal and Fluid Approximation, IBM Res. Rep. RC 16280, Yorktown Heights, NY, 1990.

  15. Shwartz, A. and Weiss, A., Induced Rare Events: Analysis via Large Deviations and Time Reversal, Adv. in Appl. Probab., 1993, vol. 25, no. 3, pp. 667–689.

    Article  MathSciNet  MATH  Google Scholar 

  16. Majewski, K. and Ramanan, K., How Large Queue Lengths Build Up in a Jackson Network, Preprint, 2008.

  17. Vinter, R.B., Optimal Control, Boston: Birkhäuser, 2000.

    MATH  Google Scholar 

  18. Bazaraa, M.S. and Shetty, C.M., Nonlinear Programming: Theory and Algorithms, New York: Wiley, 1979. Translated under the title Nelineinoe programmirovanie. Teoriya i algoritmy, Moscow: Mir, 1982.

    MATH  Google Scholar 

Download references

Acknowledgement

The author is grateful to S.A. Pirogov and A.N. Rybko for helpful discussions and advice on improving the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Puhalskii.

Additional information

Russian Text © The Author(s), 2019, published in Problemy Peredachi Informatsii, 2019, Vol. 55, No. 2, pp. 82–111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puhalskii, A.A. The Geometry of Big Queues. Probl Inf Transm 55, 174–200 (2019). https://doi.org/10.1134/S0032946019020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946019020054

Key words

Navigation