Skip to main content
Log in

Upper Bounds for the Holevo Information Quantity and Their Use

  • Information Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We present a family of easily computable upper bounds for the Holevo (information) quantity of an ensemble of quantum states depending on a reference state (as a free parameter). These upper bounds are obtained by combining probabilistic and metric characteristics of the ensemble. We show that an appropriate choice of the reference state gives tight upper bounds for the Holevo quantity which in many cases improve the estimates existing in the literature. We also present an upper bound for the Holevo quantity of a generalized ensemble of quantum states with finite average energy depending on the metric divergence of an ensemble. In the case of a multi-mode quantum oscillator, this upper bound is tight for large energy. Upper bounds for the Holevo capacity of finite-dimensional quantum channels depending on metric characteristics of the channel output are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holevo, A.S., Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel, Probl. Peredachi Inf., 1973, vol. 9, no. 3, pp. 3–11 [Probl. Inf. Transm. (Engl. Transl.), 1973, vol. 9, no. 3, pp. 177-183].

    MATH  Google Scholar 

  2. Holevo, A.S., Kvantovye sistemy, kanaly, informatsiya, Moscow: MCCME, 2010. Translated under the title Quantum Systems, Channels, Information: A Mathematical Introduction, Berlin: de Gruyter, 2012.

    Google Scholar 

  3. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000. Translated under the title Kvantovye vychisleniya i kvantovaya informatsiya, Moscow: Mir, 2006.

    MATH  Google Scholar 

  4. Wilde, M.M., Quantum Information Theory, Cambridge, UK: Cambridge Univ. Press, 2013.

    Book  Google Scholar 

  5. Audenaert, K.M.R., Quantum Skew Divergence, J. Math. Phys., 2014, vol. 55, no. 11, p. 112202 (21 pp.).

    Article  MathSciNet  Google Scholar 

  6. Briët, J. and Harremoës, P., Properties of Classical and Quantum Jensen-Shannon Divergence, Phys. Rev. A, 2009, vol. 79, no. 5, p. 052311.

    Article  Google Scholar 

  7. Fannes, M., de Melo, F., Roga, W., and Życzkowski, K., Matrices of Fidelities for Ensembles of Quantum States and the Holevo Quantity, Quantum Inf. Comput., 2012, vol. 12, no. 5–6, pp. 472–489.

    MathSciNet  MATH  Google Scholar 

  8. Roga, W., Fannes, M., and Życzkowski, K., Universal Bounds for the Holevo Quantity, Coherent Information, and the Jensen-Shannon Divergence, Phys. Rev. Lett., 2010, vol. 105, no. 4, p. 040505 (4 pp.).

    Article  MathSciNet  Google Scholar 

  9. Zhang, L., Wu, J., and Fei, S.-M., Universal Upper Bound for the Holevo Information Induced by a Quantum Operation, Phys. Lett. A, 2012, vol. 376, no. 47–48, pp. 3588–3592.

    Article  MathSciNet  Google Scholar 

  10. Alicki, R. and Fannes, M., Continuity of Quantum Conditional Information, J. Phys. A: Math. Gen., 2004, vol. 37, no. 5, pp. L55–L57.

    Article  MathSciNet  Google Scholar 

  11. Winter, A., Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints, Comm. Math. Phys., 2016, vol. 347, no. 1, pp. 291–313.

    Article  MathSciNet  Google Scholar 

  12. Lindblad, G., Expectation and Entropy Inequalities for Finite Quantum Systems, Comm. Math. Phys., 1974, vol. 39, no. 2, pp. 111–119.

    Article  MathSciNet  Google Scholar 

  13. Ohya, M. and Petz, D., Quantum Entropy and Its Use, Berlin: Springer, 1993.

    Book  Google Scholar 

  14. Donald, M.J., Further Results on the Relative Entropy, Math. Proc. Cambridge Philos. Soc., 1987, vol. 101, no. 2, pp. 363–373.

    Article  MathSciNet  Google Scholar 

  15. Shirokov, M.E., Tight Uniform Continuity Bounds for the Quantum Conditional Mutual Information, for the Holevo Quantity, and for Capacities of Quantum Channels, J. Math. Phys., 2017, vol. 58, no. 10, p. 102202 (29 pp.).

    Article  MathSciNet  Google Scholar 

  16. Holevo, A.S. and Shirokov, M.E., Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels, Teor. Veroyatnost. i Primenen., 2005, vol. 50, no. 1, pp. 98–114 [Theory Probab. Appl. (Engl. Transl.), 2006, vol. 50, no. 1, pp. 86-98].

    Article  MathSciNet  Google Scholar 

  17. Shirokov, M.E., Entropy Characteristics of Subsets of States. I, Izv. Ross. Akad. Nauk, Ser. Mat., 2006, vol. 70, no. 6, pp. 193–222 [Izv. Math. (Engl. Transl.), 2006, vol. 70, no. 6, pp. 1265-1292].

    Article  MathSciNet  Google Scholar 

  18. Wehrl, A., General Properties of Entropy, Rev. Mod. Phys., 1978, vol. 50, no. 2, pp. 221–260.

    Article  MathSciNet  Google Scholar 

  19. Wang, X., Xie, W., and Duan, R., Semidefinite Programming Strong Converse Bounds for Classical Capacity, IEEE Trans. Inform. Theory, 2018, vol. 64, no. 1, pp. 640–653.

    Article  MathSciNet  Google Scholar 

  20. Leditzky, F., Kaur, E., Datta, N., and Wilde, M.M., Approaches for Approximate Additivity of the Holevo Information of Quantum Channels, Phys. Rev. A, 2018, vol. 97, no. 1, p. 012332.

    Article  Google Scholar 

  21. Filippov, S.N., Lower and Upper Bounds on Nonunital Qubit Channel Capacities, Rep. Math. Phys., 2018, vol. 82, no. 2, pp. 149–159.

    Article  MathSciNet  Google Scholar 

  22. Amir, D. and Ziegler, Z., Relative Chebyshev Centers in Normed Linear Spaces. I, J. Approx. Theory, 1980, vol. 29, no. 3, pp. 235–252.

    Article  MathSciNet  Google Scholar 

  23. Garkavi, A.L., On the Chebyshev Center and Convex Hull of a Set, Uspekhi Mat. Nauk, 1964, vol. 19, no. 6 (120), pp. 139–145.

    MathSciNet  Google Scholar 

  24. Amosov, G.G., Strong Superadditivity Conjecture Holds for the Quantum Depolarizing Channel in Any Dimension, Phys. Rev. A, 2007, vol. 75, no. 6, p. 060304(R) (2 pp.).

    Article  Google Scholar 

  25. King, C., The Capacity of the Quantum Depolarizing Channel, IEEE Trans. Inform. Theory, 2003, vol. 49, no. 1, pp. 221–229.

    Article  MathSciNet  Google Scholar 

  26. Amosov, G.G. and Mancini, S., The Decreasing Property of Relative Entropy and the Strong Superad-ditivity of Quantum Channels, Quantum Inf. Comput., 2009, vol. 9, no. 7–8, pp. 594–609.

    MathSciNet  MATH  Google Scholar 

  27. Amosov, G.G., On Weyl Channels Being Covariant with Respect to the Maximum Commutative Group of Unitaries, J. Math. Phys., 2007, vol. 48, no. 1, p. 012104 (14 pp.).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was carried out at the expense of the Russian Science Foundation, project no. 19-11-00086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Shirokov.

Additional information

Russian Text © The Author(s), 2019, published in Problemy Peredachi Informatsii, 2019, Vol. 55, No. 3, pp. 3–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, M.E. Upper Bounds for the Holevo Information Quantity and Their Use. Probl Inf Transm 55, 201–217 (2019). https://doi.org/10.1134/S0032946019030013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946019030013

Key words

Navigation